数学物理学报 ›› 2019, Vol. 39 ›› Issue (3): 689-704.
• 论文 • 上一篇
收稿日期:
2017-05-16
出版日期:
2019-06-26
发布日期:
2019-06-27
通讯作者:
裴永珍
E-mail:yongzhenpei@163.com
基金资助:
Miaomiao Chen,Yongzhen Pei*(),Xiyin Liang,Yunfei Lv
Received:
2017-05-16
Online:
2019-06-26
Published:
2019-06-27
Contact:
Yongzhen Pei
E-mail:yongzhenpei@163.com
Supported by:
摘要:
考虑到农药的副作用,释放有病害虫作为一种有价值的非化学工具在害虫治理的过程中变得越来越重要.受到Xiang(2009)和Bhattacharyya等人(2006)工作的启发,该文研究了一类害虫管理SI传染病模型.虽然该模型具有多种动力学行为但易感害虫不能灭绝.为此,在该模型中引入多次脉冲干预措施,得到了易感害虫灭绝周期解全局渐近稳定的充分条件.然而,从生态和经济方面来说,让易感害虫灭绝的策略是不可取的,这是因为田间适当数量的害虫对于保护天敌,以及维持农作物的经济补偿是有益的.因此,用最小的成本最小化害虫在终端时刻的数量,基于不同的控制策略,三种最优害虫控制问题被详细研究.通过时间缩放和时间平移变换的方法,计算了目标函数关于脉冲时间间隔,农药致死率和病虫释放量的梯度,这对获得最优害虫控制策略是至关重要的.最后,数值模拟的结果显示,与其他两种策略相比,非固定时刻的交替综合控制策略是最有效的.另外,通过对比发现,该文提出的策略比害虫灭绝策略更可取.
中图分类号:
陈苗苗,裴永珍,梁西银,吕云飞. 害虫治理SI模型的最优脉冲控制策略[J]. 数学物理学报, 2019, 39(3): 689-704.
Miaomiao Chen,Yongzhen Pei,Xiyin Liang,Yunfei Lv. The Optimal Strategies of SI Pest Control Models with Impulsive Intervention[J]. Acta mathematica scientia,Series A, 2019, 39(3): 689-704.
表 1
三种控制策略的对比"
类型 | 最优参数 | | |
固定时刻的 不变综合控制 | 10.2645 | 3.6677 | |
非固定时刻的 交替综合控制 | 4.3162 | 1.8627 | |
非固定时刻的 变量综合控制 | 9.3975 | 2.1933 |
1 |
Pei Y , Ji X , Li C . Pest regulation by means of continuous and impulsive nonlinear controls. Math Comput Model, 2010, 51: 810- 822
doi: 10.1016/j.mcm.2009.10.013 |
2 | Pei Y , Li C , Fan S . A mathematical model of a three species prey-predator system with impulsive control and holling functional response. Appl Math Comput, 2013, 219: 10945- 10955 |
3 |
Barclay H . Combining methods of pest control:Minimizing cost during the control program. Theor Popul Biol, 1991, 40: 105- 123
doi: 10.1016/0040-5809(91)90048-K |
4 |
Tang S , Cheke R . Models for integrated pest control and their biological implications. Math Biosci, 2008, 215: 115- 125
doi: 10.1016/j.mbs.2008.06.008 |
5 | Lenteren J . Success in Biological Control of Arthropods by Augmentation of Natural Enemies. Berlin: Springer, 2000 |
6 |
Naranjo S , Ellsworth P , Frisvold G . Economic value of biological control in integrated pest management of managed plant systems. Annu Rev Entomol, 2015, 60: 621- 645
doi: 10.1146/annurev-ento-010814-021005 |
7 |
Molnar S , LaPez I , Gamez M , Garay J . A two-agent model applied to the biological control of the sugarcane borer (diatraea saccharalis) by the egg parasitoid trichogramma galloi and the larvae parasitoid cotesia flavipes. Biosystems, 2016, 141: 45- 54
doi: 10.1016/j.biosystems.2016.02.002 |
8 |
Song Y , Pei Y , Chen M , Zhu M . Translation, solving scheme, and implementation of a periodic and optimal impulsive state control problem. Adv Differ Equ-Ny, 2018, 2018: 1- 20
doi: 10.1186/s13662-017-1452-3 |
9 | Jiao J , Chen L . A pest management SI model with periodic biological and chemical control concern. Appl Math Comput, 2006, 183: 1018- 1026 |
10 |
Wang L , Chen L , Nieto J . The dynamics of an epidemic model for pest control with impulsive effect. Nonlinear Anal-Real, 2010, 11: 1374- 1386
doi: 10.1016/j.nonrwa.2009.02.027 |
11 | Xiang Z . Dynamic analysis of a SI system with periodic biological and chemical control. Applied Mathematical Sciences, 2009, 3: 2327- 2334 |
12 |
Shi R , Jiang X , Chen L . A predator-prey model with disease in the prey and two impulses for integrated pest management. Appl Math Model, 2009, 33: 2248- 2256
doi: 10.1016/j.apm.2008.06.001 |
13 |
Zhang H , Xu W , Chen L . A impulsive infective transmission SI model for pest control. Math Method Appl Ssi, 2007, 30: 1169- 1184
doi: 10.1002/(ISSN)1099-1476 |
14 |
Jiao J , Chen L , Cai S . Impulsive control strategy of a pest management model with nonlinear incidence rate. Appl Math Model, 2009, 33: 555- 563
doi: 10.1016/j.apm.2007.11.021 |
15 |
Tan Y , Chen L . Modelling approach for biological control of insect pest by releasing infected pest. Chaos Soliton Fract, 2009, 39: 304- 315
doi: 10.1016/j.chaos.2007.01.098 |
16 |
Shi R , Chen L . An impulsive predator-prey model with disease in the prey for integrated pest management. Commun Nonlinear Sci, 2010, 15: 421- 429
doi: 10.1016/j.cnsns.2009.04.001 |
17 |
Liu B , Wang Y , Kang B . Dynamics on a pest management SI model with control strategies of different frequencies. Nonlinear Anal-Hybri, 2014, 12: 66- 78
doi: 10.1016/j.nahs.2013.11.006 |
18 |
Meng X , Song Z , Chen L . A new mathematical model for optimal control strategies of integrated pest management. J Biol Syst, 2007, 15: 219- 234
doi: 10.1142/S0218339007002143 |
19 | Ding Y , Gao S , Liu Y , Lan Y . A pest management epidemic model with time delay and stage-structure. Applied Mathematics, 2010, 1: 216- 221 |
20 |
Zhang T , Meng X , Song Y , Zhang T . A stage-structured predator-prey SI model with disease in the prey and impulsive effects. Math Model Anal, 2013, 18: 505- 528
doi: 10.3846/13926292.2013.840866 |
21 | Xiang Z , Tang S , Xiang C , Wu J . On impulsive pest control using integrated intervention strategies. Appl Math Comput, 2015, 269: 930- 946 |
22 |
Wang X , Tao Y , Song X . Analysis of pest-epidemic model by releasing diseased pest with impulsive transmission. Nonlinear Dynam, 2011, 65: 175- 185
doi: 10.1007/s11071-010-9882-4 |
23 |
Guan H . Aperiodic solution mathematical model for pest management and optimization chemical control. Adv Mater Res, 2014, 1079-1080: 660- 663
doi: 10.4028/www.scientific.net/AMR.1079-1080 |
24 |
Jiao J , Chen L . Nonlinear incidence rate of a pest management SI model with biological and chemical control concern. Appl Math Mech-Engl, 2007, 28: 541- 551
doi: 10.1007/s10483-007-0415-y |
25 | Pei Y , Chen M , Liang X , et al. Optimal control problem in an epidemic disease SIS model with stages and delays. Int J Biomath, 2016, 9: 131- 152 |
26 |
Tang S , Liang J , Tan Y , Cheke R . Threshold conditions for integrated pest management models with pesticides that have residual effects. J Math Biol, 2013, 66: 1- 35
doi: 10.1007/s00285-011-0501-x |
27 |
Kamgarpour M , Tomlin C . On optimal control of non-autonomous switched systems with a fixed mode sequence. Automatica, 2012, 48: 1177- 1181
doi: 10.1016/j.automatica.2012.03.019 |
28 |
Xu X , Antsaklis P . Optimal control of switched systems based on parameterization of the switching instants. IEEE T Automat Contr, 2004, 49: 2- 16
doi: 10.1109/TAC.2003.821417 |
29 |
Wu C , Teo K . Global impulsive optimal control computation. J Ind Manag Optim, 2006, 2: 435- 450
doi: 10.3934/jimo |
30 |
Teo K . Control parametrization enhancing transform to optimal control problems. Nonlinear Analysis, 2005, 63: e2223- e2236
doi: 10.1016/j.na.2005.03.066 |
31 |
Liu Y , Teo K , Jennings L , Wang S . On a class of optimal control problems with state jumps. J Optimiz Theory App, 1998, 98: 65- 82
doi: 10.1023/A:1022684730236 |
32 | Loxton R , Lin Q , Teo K . Switching time optimization for nonlinear switched systems:Direct optimization and the time-scaling transformation. Pac J Optim, 2014, 10: 537- 560 |
33 | Dykhta V . Second order necessary optimality conditions for impulse control problem and multiprocesses. IFAC Proceedings Volumes, 1997, 30: 97- 101 |
34 |
Chen M , Pei Y , Liang X , et al. A hybrid optimization problem at characteristic times and its application in agroecological system. Adv Differ Equ-Ny, 2016, 2016: 1- 13
doi: 10.1186/s13662-015-0739-5 |
35 |
Bhattacharyya S , Bhattacharya D . Pest control through viral disease:mathematical modeling and analysis. J Theor Biol, 2006, 238: 177- 197
doi: 10.1016/j.jtbi.2005.05.019 |
[1] | 陈驰洲, 郭洪欣. 三维拓展里奇孤立子的体积增长[J]. 数学物理学报, 2025, 45(3): 850-857. |
[2] | 陈娜,王培合. 带有斜边值条件的 Hessian 商方程解的梯度估计[J]. 数学物理学报, 2025, 45(2): 493-511. |
[3] | 王吴静, 朱美玲, 张永乐. 求解拟单调变分不等式问题与不动点问题公共解的新投影算法[J]. 数学物理学报, 2025, 45(1): 236-255. |
[4] | 李姣芬, 孔鲁源, 宋佳铄, 文娅琼. 特征提取中一类矩阵迹函数极值问题的黎曼优化算法[J]. 数学物理学报, 2024, 44(4): 1012-1036. |
[5] | 简金宝, 代钰, 尹江华. 分裂可行性问题的一个惯性共轭梯度投影法[J]. 数学物理学报, 2024, 44(4): 1066-1079. |
[6] | 蔡宇, 周光辉. 一种 WYL 型谱共轭梯度法的全局收敛性[J]. 数学物理学报, 2024, 44(1): 173-184. |
[7] | 袁永军. 计算自旋轨道耦合 Spin-2 BEC 基态的带拉格朗日乘子的正规梯度流法[J]. 数学物理学报, 2023, 43(5): 1607-1619. |
[8] | 邹永辉,徐鑫. 二维可压缩Prandtl方程倒流点的存在性[J]. 数学物理学报, 2023, 43(3): 691-701. |
[9] | 刘鹏杰, 吴彦强, 邵枫, 张艳, 邵虎. 两个带重启方向的改进 HS 型共轭梯度法[J]. 数学物理学报, 2023, 43(2): 570-580. |
[10] | 鲁呵倩,张正策. 带非线性梯度项的p-Laplacian抛物方程的临界指标[J]. 数学物理学报, 2022, 42(5): 1381-1397. |
[11] | 刘丽平,彭建文. 求解变分不等式和不动点问题的公共元的修正次梯度外梯度算法[J]. 数学物理学报, 2022, 42(5): 1517-1536. |
[12] | 袁功林,吴宇伦,PhamHongtruong. 基于非单调线搜索的HS-DY形共轭梯度方法及在图像恢复中的应用[J]. 数学物理学报, 2022, 42(2): 605-620. |
[13] | 江羡珍,廖伟,简金宝,毋晓迪. 一个带重启步的改进PRP型谱共轭梯度法[J]. 数学物理学报, 2022, 42(1): 216-227. |
[14] | 朱志斌,耿远航. 一个改进的WYL型三项共轭梯度法[J]. 数学物理学报, 2021, 41(6): 1871-1879. |
[15] | 马国栋. 强Wolfe线搜索下的修正PRP和HS共轭梯度法[J]. 数学物理学报, 2021, 41(3): 837-847. |
|