| 1 | Barbǎlat I . Systèmes d'équations differentielles d'oscillations non linéaires. Rev Math Pures Appl, 1959, 4: 267- 270 | | 2 | Coll J C , et al. Chemical aspects of mass spawning in corals. Ⅱ. Epi-thunbergol, the sperm attractant in the eggs of the soft coral Lobophytum crassum (Cnidaria:Octocorallia). Mar Biol, 1995, 123 (1): 137- 143 | | 3 | Duan R , Li X , Xiang Z . Global existence and large time behavior for a two-dimensional chemotaxis-NavierStokes system. J Differential Equations, 2017, 263: 6284- 6316 | | 4 | Espejo E , Suzuki T . Reaction enhancement by chemotaxis. Nonlinear Anal RWA, 2017, 35: 102- 131 | | 5 | Espejo E , Suzuki T . Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal RWA, 2015, 21: 110- 126 | | 6 | Henry D . Geometric Theory of Semilinear Parabolic Equations. Berlin: Springer-Verlag, 1981 | | 7 | Horstmann D , Winkler M . Boundedness vs. blow-up in a chemotaxis system. J Differential Equations, 2005, 215: 52- 107 | | 8 | Keller E F , Segel L A . Model for chemotaxis. J Theoret Biol, 1971, 30: 225- 234 | | 9 | Keller E F , Segel L A . Travelling bands of chemotactic bacteria:a theoretical analysis. J Theoret Biol, 1971, 30: 235- 248 | | 10 | Kiselev A , Ryzhik L . Biomixing by chemotaxis and enhancement of biological reactions. Comm Partial Differential Equations, 2012, 37: 298- 312 | | 11 | Li X , Wang Y , Xiang Z . Global existence and boundedness in a 2D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux. Commun Math Sci, 2016, 14: 1889- 1910 | | 12 | Li X , Xiao Y . Global existence and boundedness in a 2D Keller-Segel-Stokes system. Nonlinear Anal RWA, 2017, 35: 102- 131 | | 13 | Miller R L . Demonstration of sperm chemotaxis in echinodermata:asteroidea, holothuroidea, ophiuroidea. J Exp Zool, 1985, 234: 383- 414 | | 14 | Tao Y , Winkler M . Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z Angew Math Phys, 2015, 66: 2555- 2573 | | 15 | Wang Y , Winkler M , Xiang Z . The small-convection limit in a two-dimensional chemotaxis-Navier-Stokes system. Math Z, 2018, 289: 71- 108 | | 16 | Wang Y , Xiang Z . Global existence and boundedness in a Keller-Segel-Stokes system involving a tensorvalued sensitivity with satuation. J Differential Equations, 2015, 259 (12): 7578- 7609 | | 17 | Winkler M . Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model. J Differential Equations, 2010, 248 (12): 2889- 2905 | | 18 | Winkler M . Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system. Ann Inst H Poincare (C) Non Linear Anal, 2016, 33 (5): 1329- 1352 | | 19 | Wu J , Wu C . A note on the global existence of a two-dimensional chemotaxis-Navier-Stokes system. Applicable Analysis, 2019, 98: 1224- 1235 | | 20 | Wu X , Ding X , Lu T , Wang J . Topological dynamics of Zadeh's extension on upper semi-continuous fuzzy sets. Int J Bifurcation and Chaos, 2017, 27: 1750165 | | 21 | Wu X , Ma X , Zhu Z , Lu T . Topological ergodic shadowing and chaos on uniform spaces. Int J Bifurcation and Chaos, 2018, 28: 1850043 |
|