| 1 | Ansari Q H , Oettli W , Schl?ger D . A generalization of vectorial equilibria. Math Method Oper Res, 1997, 46 (2): 147- 152 | | 2 | Chadli O , Chiang Y , Huang S . Topological pseudomonotonicity and vector equilibrium problems. J Math Anal Appl, 2002, 270 (2): 435- 450 | | 3 | Li J , Huang N J , Kim J . On implicit vector equilibrium problems. J Math Anal Appl, 2003, 283 (2): 501- 512 | | 4 | Farajzadeh A P , Amini-Harandi A . On the generalized vector equilibrium problems. J Math Anal Appl, 2008, 344 (2): 999- 1004 | | 5 | Capǎtǎ A . Exisrence results for globally efficient solutions of vector equilibrium problems via a generalized KKM principle. Acta Math Sci, 2017, 37 (2): 463- 476 | | 6 | Ansari Q H , Konnov I V , Yao J C . On generalized vector equilibrium problems. Acta Math Appl Sin, 2006, 47 (1): 543- 554 | | 7 | Ansari Q H , Schaible S , Yao J C . The system of generalized vector equilibrium problems with applications. J Global Optim, 2002, 22 (1/4): 3- 16 | | 8 | Ansari Q H , Flores-Bazan F . Generalized vector quasi-equilibrium problems with applications. J Math Anal Appl, 2003, 277 (1): 246- 256 | | 9 | Lashkaripour R , Karamian A . On a new generalized symmetric vector equilibrium problem. J Inequal Appl, 2017, 2017 (1): 237 | | 10 | Bianchi M , Kassay G , Pini R . Ekeland's principle for vector equilibrium problems. Nonlinear Analysis, 2007, 66 (7): 1454- 1464 | | 11 | Gong X . Ekeland's principle for set-valued vector equilibrium problems. Acta Math Sci, 2014, 34 (4): 1179- 1192 | | 12 | Gutiérrez C , Kassay G , Novo V , Ródenas-Pedregosa J L . Ekeland variational principles in vector equilibrium problems. SIAM J Optimiz, 2017, 27 (4): 2405- 2425 | | 13 | G?pfert A , Riahi H , Tammer C , et al. Variational Methods in Partially Ordered Spaces. New York: Springer, 2003 | | 14 | Nishimura H , Ok E A . Solvability of variational inequalities on Hilbert lattices. Math Oper Res, 2012, 37 (4): 608- 625 | | 15 | Xie L , Li J , Yang W . Order-clustered fixed point theorems on chain-complete preordered sets and their applications to extended and generalized Nash equilibria. Fixed Point Theory A, 2013, 2013 (1): 192 | | 16 | Zhang C , Wang Y . Applications of order-theoretic fixed points theorems to discontinuous quasi-equilibrium problems. Fixed Point Theory A, 2015, 2015: 54 | | 17 | Meyer-Nieberg P . Banach Lattices. Berlin: Springer-Verlag, 1991 | | 18 | L?hne A . Vector Optimization with Infimum and Supremum. Heidelberg: Springer, 2011 | | 19 | Kukushkin N S . Increasing selections from increasing multifunctions. Order, 2013, 30 (2): 541- 555 | | 20 | Li J . Several extensions of the Abian-Brown fixed point theorem and their applications to extended and generalized Nash equilibria on chain-complete posets. J Math Anal Appl, 2014, 409 (2): 1084- 1092 | | 21 | Smithson R E . Fixed points of order preserving multifunctions. Proc Amer Math Soc, 1971, 28 (1): 304- 310 | | 22 | Abian S , Brown A B . A theorem on partially ordered sets, with applications to fixed point theorems. Can J Math, 1961, 13: 78- 82 | | 23 | Tarski A . A lattice-theoretical fixpoint theorem and its applications. Pac J Math, 1955, 5 (2): 285- 309 | | 24 | Wang Y , Zhang C . Order-preservations of solution correspondence for parametric generalized variational inequalities on Banach lattices. Fixed Point Theory and Applications, 2015, 2015: 108 |
|