| 1 | Andrews B . Moduli of continuity, isoperimetric profiles, and multi-point estimates in geometric heat equations. Surv Differ Geom, 2014, 19, 1- 47 |
| 2 | Andrews B , Clutterbuck J . Lipschitz bounds for solutions of quasilinear parabolic equations in one space variable. J Differential Equations, 2009, 246 (11): 4268- 4283 |
| 3 | Andrews B , Clutterbuck J . Proof of the fundamental gap conjecture. J Amer Math Soc, 2011, 24 (3): 899- 916 |
| 4 | Andrews B, Clutterbuck J, Hauer D. Non-concavity of Robin eigenfunctions. 2017, arXiv: 1711.02779v1 |
| 5 | Ashbaugh M S. The Fundamental Gap.[2006-12-12] http://www.aimath.org/WWN/loweigenvalues/ |
| 6 | Ashbaugh M S , Benguria R D . Optimal lower bound for the gap between the first two eigenvalues of one-dimensional Schr?dinger operators with symmetric single-well potentials. Proc Amer Math Soc, 1989, 105 (2): 419- 424 |
| 7 | Van den Berg M . On condensation in the free-boson gas and the spectrum of the Laplacian. J Statist Phys, 1983, 31 (3): 623- 637 |
| 8 | Brascamp H , Liep E . On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave function, and with an application to diffusion equation. J Funct Anal, 1976, 22, 366- 389 |
| 9 | Cheng S Y , Oden K . Isoperimetric inequalities and the gap between the first and second eigenvalues of an Euclidean domain. J Geom Anal, 1997, 7 (2): 217- 239 |
| 10 | He C X, Wei G F. Fundamental Gap of Convex Domains in the Spheres (with Appendix B by Zhang Q S). 2017, https://arxiv.org/abs/1705.11152v1 |
| 11 | Horváth M . On the first two eigenvalues of Sturm-Liouville operators. Proc Amer Math Soc, 2003, 131 (4): 1215- 1224 |
| 12 | Lavine R . The eigenvalue gap for one-dimensional convex potentials. Proc Amer Math Soc, 1994, 121 (3): 815- 821 |
| 13 | Lee Y I , Wang A N . Estimate of λ2-λ1 on spheres. Chinese J Math, 1987, 15 (2): 95- 97 |
| 14 | Ling J . A lower bound for the gap between the first two eigenvalues of Schr?dinger operators on the convex domains in Sn or Rn. Michigan Mathematical Journal, 1993, 40 (2): 259- 270 |
| 15 | Ling J . A lower bound of the first Dirichlet eigenvalue of a compact manifold with positive Ricci curvature. International J Math, 2006, 17 (5): 605- 617 |
| 16 | Ling J . Lower bounds of the eigenvalues of compact manifolds with positive Ricci curvature. Ann of Global Anal and Geo, 2007, 31 (4): 385- 408 |
| 17 | Ling J . Estimates on the lower bound of the first gap. Comm Anal Geometry, 2008, 16 (3): 539- 563 |
| 18 | Ling J, Lu Z Q. Bounds of Eigenvalues on Riemannian Manifolds//Bian B J, et al. Trends in Partial Differential Equations. Beijing: Higher Education Press, 2009: 241-264 |
| 19 | Ni L . Estimates on the modulus of expansion for vector fields solving nonlinear equations. J Math Pures Appl, 2013, 99 (1): 1- 16 |
| 20 | Oden K , Sung C J , Wang J . Spectral gap estimates on compact manifolds. Trans Amer Math Soc, 1999, 351 (9): 3533- 3548 |
| 21 | Schoen R , Yau S T . Lectures on Differential Geometry. Cambridge: International Press, 1994 |
| 22 | Seto S, Wang L L, Wei G F. Sharp fundamental gap estimate on convex domains of spheres. 2016, http://arxiv.org/abs/1606.01212v2 |
| 23 | Singer I M , Wong B , Yau S T , Yau S S T . An estimate of the gap of the first two eigenvalues in the Schr?dinger operator. Ann Scuola Norm Sup Pisa Cl Sci, 1985, 12 (2): 319- 333 |
| 24 | Yang D G . Lower bound estimates of the first eigenvalue for compact manifolds with positive Ricci curvature. Pacific J Math, 1999, 190 (2): 383- 398 |
| 25 | Yau S T. Nonlinear Analysis in Geometry. Geneva: L'Enseignement Mathématique, 1986 |
| 26 | Yau S T. An Estimate of the Gap of the First two Eigenvalues in the Schr?dinger Operator//Chang Alice, et al. Lectures on Partial Differential Equations. Somerville, MA: Int Press, 2003: 223-235 |
| 27 | Yu Q H , Zhong J Q . Lower bounds of the gap between the first and second eigenvalues of the Schr?dinger operator. Trans Amer Math Soc, 1986, 294 (1): 341- 349 |
| 28 | Zhong J Q , Yang H C . On the estimate of the first eigenvalue of a compact Riemannian manifold. Sci Sinica Ser A, 1984, 27 (12): 1265- 1273 |
| 29 | Wolfson J . Eigenvalue gap theorems for a class of nonsymmetric elliptic operators on convex domains. Comm Partial Differential Equations, 2015, 40 (4): 601- 628 |
| 30 | 何跃. 正Ricci曲率的紧流形上第一特征值下界的新估计. 数学物理学报, 2016, 36A (2): 215- 230 |
| 30 | He Yue . New estimates of lower bound for the first eigenvalue on compact manifolds with positive Ricci curvature. Acta Math Sci, 2016, 36A (2): 215- 230 |