| 1 | Glangetas L . Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponent. Nonlinear Anal, 1993, 20, 571- 603 | | 2 | Oh R . The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent. Journal of Functional Analysis, 1990, 89 (1): 1- 52 | | 3 | Grossi M . On the number of single-peak solutions of the nonlinear Schr?dinger equation. Annales De Linstitut Henri Poincare Non Linear Analysis, 2002, 19 (3): 261- 280 | | 4 | Cao D , Heinz H P . Uniqueness of positive multi-lump bound states of nonlinear Schr?dinger equations. Mathematische Zeitschrift, 2003, 243 (3): 599- 642 | | 5 | Deng Y , Lin C , Yan S . On the prescribed scalar curvature problem in $\mathbb{R}^N$, local uniqueness and Periodicity. Journal De Mathématiques Pures Et Appliquées, 2015, 104 (6): 1013- 1044 | | 6 | Cao D , Li S , Luo P . Uniqueness of positive bound states with multi-bump for nonlinear Schr?dinger equations. Calculus of Variations and Partial Differential Equations, 2015, 54 (4): 4037- 4063 | | 7 | Guo Y , Peng S , Yan S . Local uniqueness and periodicity induced by concentration. Proceedings of the London Mathematical Society, 2017, 114, 1005- 1043 | | 8 | Peng S , Wang C , Yan S . Construction of solutions via local Pohozaev idnetities. Journal of Functional Analysis, 2018, 274, 2606- 2633 | | 9 | Deng Y , Peng S , Shuai W . Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in $\mathbb{R}^3$. Journal of Functional Analysis, 2015, 269 (11): 3500- 3527 | | 10 | Figueiredo G , Ikoma N , Santos J . S Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Archive for Rational Mechanics and Analysis, 2014, 123 (3): 931- 979 | | 11 | Guo Z . Ground states for Kirchhoff equations without compact condition. Journal of Differential Equations, 2015, 259 (7): 2884- 2902 | | 12 | He Y , Li G . Standing waves for a class of Kirchhoff type problems in $\mathbb{R}^3$ involving critical Sobolev exponents. Calculus of Variations and Partial Differential Equations, 2015, 54 (3): 3067- 3106 | | 13 | He X , Zou W . Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Analysis:Theory, Methods and Applications, 2010, 70 (3): 1407- 1414 | | 14 | He X , Zou W . Multiplicity of solutions for a class of Kirchhoff type problems. Acta Mathematicae Applicatae Sinica, 2010, 70 (3): 387- 394 | | 15 | Li Y , Li F , Shi J . Existence of a positive solution to Kirchhoff type problems without compactness conditions. Journal of Differential Equations, 2012, 253 (7): 2285- 2294 | | 16 | Li G , Ye H . Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^3$. Journal of Differential Equations, 2014, 257 (2): 566- 600 | | 17 | Lu S . An autonomous Kirchhoff-type equation with general nonlinearity in $\mathbb{R}^N$. Nonlinear Analysis:Real World Applications, 2017, 34, 233- 249 | | 18 | Perera K , Zhang Z . Nontrivial solutions of Kirchhoff-type problems via the Yang index. Journal of Differential Equations, 2006, 221 (1): 246- 255 | | 19 | Zhang Z , Perera K . Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. Journal of Mathematical Analysis and Applications, 2006, 317 (2): 456- 463 | | 20 | Li G, Luo P, Peng S, et al. Uniqueness and nondegeneracy of positive solutions to Kirchhoff equations and its applications in singular perturbation problems. 2017, arXiv:1703.05459 | | 21 | Cao D , Li S , Luo P . Uniqueness of positive bound states with multi-bump for nonlinear Schr?dinger equations. Calculus of Variations and Partial Differential Equations, 2015, 54 (4): 4037- 4063 |
|