| 1 | 马知恩, 周义仓, 王稳地, 等. 传染病动力学的数学建模与研究. 北京: 科学出版社, 2004: 42- 56 | | 1 | Ma Z E , Zhou Y C , Wang W D , et al. Mathematics Modeling and Research of Infectious Disease Dynamics. Beijing: Science Press, 2004: 42- 56 | | 2 | Brauer F , Castillo-Chavez C . Mathematical Models in Population Biology and Epidemiology. New York: Springer, 2012: 1- 60 | | 3 | 陈兰荪, 孟新柱, 焦建军. 生物动力学. 北京: 科学出版社, 2009: 150- 440 | | 3 | Chen L S , Meng X Z , Jiao J J . Biodynamics. Beijing: Science Press, 2009: 150- 440 | | 4 | Zhao X Q . Dynamical Systems in Population Biology. New York: Springer, 2017: 1- 116 | | 5 | 王宾国, 邵昶, 李海萍. 仓室传染病模型基本再生数的发展简介. 兰州大学学报(自然科学版), 2016, 52 (3): 380- 384 | | 5 | Wang B G , Shao C , Li H P . Basic repoduction numbers for compartmetal epidemic models. Journal of Lanzhou University (Natural Sciences), 2016, 52 (3): 380- 384 | | 6 | Liang X , Zhang L , Zhao X Q . Basic reproduction ratios for periodic abstract functional differential equations (with application to a spatial model for Lyme disease). J Dynam Differential Equations, 2019, 31, 1247- 1278 | | 7 | Zhao X Q . Basic reproduction ratios for periodic compartmental models with time delay. J Dynam Differential Equations, 2017, 29, 67- 82 | | 8 | Bai Z G , Peng R , Zhao X Q . A reaction-diffusion malaria model with seasonality and incubation period. J Math Biol, 2018, 77, 201- 228 | | 9 | Lou Y J , Zhao X Q . A theoretical aproach to understanding population dynamics with seasonal developmental durations. J Nonlinear Sci, 2017, 27, 573- 603 | | 10 | 刘胜强, 陈兰荪. 阶段结构种群生物模型与研究. 北京: 科学出版社, 2010: 8- 15 | | 10 | Liu S Q , Chen L S . Population Biological Model with Stage Structure Population and Research. Beijing: Science Press, 2010: 8- 15 | | 11 | Zhang L , Wang Z C , Zhao X Q . Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period. J Differential Equations, 2015, 258 (9): 3011- 3036 | | 12 | 王双明, 张明军, 樊馨蔓. 一类具时滞的周期logistic传染病模型空间动力学研究. 应用数学和力学, 2018, 39 (2): 226- 238 | | 12 | Wang S M , Zhang M J , Fan X M . Spatial dynamics of periodic reaction-diffusion epidemic models with delay and logistic growth. Applied Mathematics and Mechanics (Chinese Edition), 2018, 39 (2): 226- 238 | | 13 | Hay S I , Graham A , Rogers D J . Global Mapping of Infectious Diseases:Methods, Examples and Emerging Applications. London: Academic Press, 2006 | | 14 | Paaijmans K P , Read A F , Thomas M B . Understanding the link between malaria risk and climate. Proc Nat Acad Sci USA, 2009, 106 (33): 13844- 13849 | | 15 | 王智诚, 王双明. 一类时间周期的时滞反应扩散模型的空间动力学研究. 兰州大学学报:自然科学版, 2013, (4): 535- 540 | | 15 | Wang Z C , Wang S M . Spatial dynamics of a class of delayed nonlocal reaction-diffusion models with a time period. Journal of Lanzhou University (Natural Sciences), 2013, (4): 535- 540 | | 16 | Magal P , Zhao X Q . Global attractors and steady states for uniformly persistent dynamical systems. SIAM J Math Anal, 2005, 37 (1): 251- 275 | | 17 | Lou Y J , Zhao X Q . Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete Contin Dyn Syst Ser B, 2009, 12, 169- 186 | | 18 | Posny D , Wang J . Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments. Appl Math Comput, 2014, 242, 473- 490 |
|