| 1 | Duffin R J , Schaeffer A C . A class of nonharmonic Fourier series. Trans Amer Math Soc, 1952, 72, 341- 366 | | 2 | Daubechies I , Grossmann A , Meyer Y . Painless nonorthogonal expansions. J Math Phy, 1986, 27, 1271- 1283 | | 3 | Chan R H , Riemenschneider S D , Shen L , et al. Tight frame:An efficient way for high-resolution image reconstruction. Appl Compute Harmon Anal, 2004, 17, 91- 115 | | 4 | Strohmer T . Approximation of dual Gabor frames, window decay, and wireless communication. Appl Compute Harmon Anal, 2001, 11, 243- 262 | | 5 | Candès E J . Harmonic analysis of neural networks. Appl Compute Harmon Anal, 1999, 6, 197- 218 | | 6 | Eldar Y , Forney Jr G D . Optimal tight frames and quantum measurement. IEEE Trans Inform Theory, 2002, 48, 599- 610 | | 7 | Christensen O . An Introduction to Frames and Riesz Bases. Boston: Birkh?user, 2003 | | 8 | Guo X X . Characterizations of disjointness of g-frames and constructions of g-frames in Hilbert spaces. Complex Anal Oper Theory, 2014, 8, 1547- 1563 | | 9 | Casazza P G . The art of frame theory. Taiwanese J Math, 2000, 4, 129- 201 | | 10 | Zhang W . Dual and aroximately dual Hilbert-Schmidt frames in Hilbert spaces. Results in Mathematics, 2018, 73 (4): 1- 20 | | 11 | Casazza P G , Kutyniok G , Li S . Fusion frames and distributed processing. Appl Comput Harmon Anal, 2008, 25, 114- 132 | | 12 | Fornasier M . Quasi-orthogonal decompositions of structured frames. J Math Anal Appl, 2004, 289, 180- 199 | | 13 | Li S , Ogawa H . Pseudo-frames for subspaces with applications. J Fourier Anal Appl, 2004, 10, 409- 431 | | 14 | Sun W C . G-frames and g-Riesz bases. J Math Anal Appl, 2006, 322, 437- 452 | | 15 | Han D , Larson D . Frames, bases and group representations. Mem Amer Math Soc, 2000, 697, 94- 147 | | 16 | Sun W C . Stability of g-frames. J Math Anal Appl, 2007, 326, 858- 868 | | 17 | Najati A , Faroughi M H , Rahimi A . G-frames and stability of g-frames in Hilbert spaces. Methods Funct Anal Topology, 2008, 14, 271- 286 |
|