数学物理学报 ›› 2020, Vol. 40 ›› Issue (3): 631-640.
收稿日期:
2019-06-05
出版日期:
2020-06-26
发布日期:
2020-07-15
作者简介:
刘红梅, E-mail:基金资助:
Received:
2019-06-05
Online:
2020-06-26
Published:
2020-07-15
Supported by:
摘要:
该文以两个高斯超几何求和公式为基础,建立一系列关于中心二项式系数和广义调和数的无穷级数恒等式.
中图分类号:
刘红梅. 含有中心二项式系数以及广义调和数的无穷级数恒等式[J]. 数学物理学报, 2020, 40(3): 631-640.
Hongmei Liu. Infinite Series Involving Central Binomial Coefficients and Generalized Harmonic Numbers[J]. Acta mathematica scientia,Series A, 2020, 40(3): 631-640.
表 1
由推论2.1给出的关于中心二项式系数的求和公式"
central binomial coefficient summation formulas | ||||
表 2
由推论2.2给出的关于中心二项式系数的求和公式"
central binomial coefficient summation formulas | ||||
表 3
由推论2.3给出的关于中心二项式系数的求和公式"
| central binomial coefficient summation formulas | |||
1 | Ablinger J . Discovering and proving infinite binomial sums identities. Exp Math, 2017, 26 (1): 62- 71 |
2 | Apéry R . Irrationalité de $\zeta(2)$ et $\zeta(3)$. Astérisque, 1979, 61, 11- 13 |
3 | Bailey W N . Generalized Hypergeometric Series. Cambridge: Cambridge Univ Press, 1935 |
4 |
Campbell J M . Ramanujan-like series for $\frac{1}{\pi}$ involving harmonic numbers. Ramanujan J, 2018, 46 (2): 373- 387
doi: 10.1007/s11139-018-9995-9 |
5 |
Chen X , Chu W . The Gauss $_2F_1(1)$-summation theorem and harmonic number identities. Integral Transforms Spec Funct, 2009, 20 (12): 925- 935
doi: 10.1080/10652460903016166 |
6 |
Chen X , Chu W . Dixon's $_3F_2(1)$-series and identities involving harmonic numbers and Riemann zeta function. Discrete Math, 2010, 310, 83- 91
doi: 10.1016/j.disc.2009.07.029 |
7 |
Chu W . Hypergeometric series and the Riemann zeta function. Acta Arith, 1997, 82 (2): 103- 118
doi: 10.4064/aa-82-2-103-118 |
8 |
Chu W . Hypergeometric approch to Apéry-like series. Integral Transforms Spec Funct, 2017, 28 (7): 505- 518
doi: 10.1080/10652469.2017.1315416 |
9 | Chu W , Zheng D Y . Infinite series with harmonic numbers and central binomial coefficients. Int J Number Theory, 2009, 5 (3): 429- 448 |
10 | Comtet L. Advanced Combinatorics. Dordrecht: Klumer, 1974 |
11 | Kölbig K S . The polygamma function $\psi^{(k)}(x)$ for $x=\frac{1}{4}$ and $x=\frac{3}{4}$. J Comput Appl Math, 1996, 75, 43- 46 |
12 |
Liu H , Wang W . Harmonic number identities via hypergeometric series and Bell polynomials. Integral Transforms Spec Funct, 2012, 23 (1): 49- 68
doi: 10.1080/10652469.2011.553718 |
13 |
Liu H , Zhou W , Ding S . Generalized harmonic number summation formulae via hypergeometric series and digamma functions. J Differ Equ Appl, 2017, 23 (7): 1204- 1218
doi: 10.1080/10236198.2017.1318861 |
14 |
Liu H , Wang W . Gauss's theorem and harmonic number summation formulae with certain mathematical constants. J Differ Equ Appl, 2019, 25 (3): 313- 330
doi: 10.1080/10236198.2019.1572127 |
15 |
Lehmer D H . Interesting series involving the central binomial coefficient. Amer Math Monthly, 1985, 92, 449- 457
doi: 10.1080/00029890.1985.11971651 |
16 | Riordan J. An Introduction to Combinatorial Analysis. Reprint of the 1958 Original. Mineola: Dover, 2002 |
17 | Srivastava H M, Choi J. Series Associated with the Zeta and Related Functions. Dordrecht: Kluwer Academic Publishers, 2001 |
18 | Slater L J . Generalized Hypergeometric Functions. Cambridge: Cambridge Univ Press, 1966 |
19 | Sun Z . New series for some special values of $L$-functions. Nanjing Univ J Math, 2015, 32 (2): 189- 218 |
20 |
Wang W , Jia C . Harmonic number identities via the Newton-Andrews method. Ramanujan J, 2014, 35 (2): 263- 285
doi: 10.1007/s11139-013-9511-1 |
21 |
Wang W , Xu C . Evaluations of sums involving harmonic numbers and binomial coefficients. J Differ Equ Appl, 2019, 25 (7): 1007- 1023
doi: 10.1080/10236198.2019.1647184 |
22 |
Wang X , Chu W . Further Ramanujan-like series containing harmonic numbers and squared binomial coefficients. Ramanujan J, 2019
doi: 10.1007/s11139-019-00140-5 |
23 |
Zheng D . Further summation formulae related to generalized harmonic numbers. J Math Anal Appl, 2007, 335 (1): 692- 706
doi: 10.1016/j.jmaa.2007.02.002 |
24 |
Zucker I J . On the series $\sum\limits_{k=1}^{\infty} \big({}^{2k}_{\; k}\big)^{-1}k^{-n}$. J Number Theory, 1985, 20, 92- 102
doi: 10.1016/0022-314X(85)90019-8 |
[1] | 刘红梅, 李阳. 两类Kampé de Fériet,级数的简化和求和公式[J]. 数学物理学报, 2025, 45(1): 136-152. |
[2] | 刘红梅, 周文书, 李阳. 双变量超几何级数的变换与简化公式[J]. 数学物理学报, 2016, 36(1): 150-156. |
[3] | 张春苟. 单纯形上Meyer Konig and Zeller算子的二阶矩量 [DM)][J]. 数学物理学报, 2005, 25(2): 256-263. |
|