| 1 | Ablowitz M J , Clarkson P A . Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge University Press, 1991 | | 2 | Maeda M , Sasaki H , Segawa E . Scattering and inverse scattering for nonlinear quantum walks. Discrete Cont Dyn, 2018, 38, 3687- 3703 | | 3 | Hirota R . The Direct Method in Soliton. Cambridge: Cambridge University Press, 2004 | | 4 | Rogers C , Schief W K . Backlund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory. Cambridge: Cambridge University Press, 2002 | | 5 | Matveev V B , Salle M A . Darboux Transformations and Solitons. Berlin: Springer, 1991 | | 6 | Geng X G , Ren H F , He G L . Darboux transformation for a generalized Hirota-Satsuma coupled Kortewegde Vries equation. Phys Rev E, 2009, 79, 056602 | | 7 | Xue L L , Liu Q P , Wang D S . A generalized Hirota-Satsuma coupled KdV system:Darboux transformations and reductions. J Math Phys, 2016, 57, 083506 | | 8 | Gordoa P R , Pichering A , Zhu Z N . Backlund transformations for a matrix second Painleve' equation. Phys Lett A, 2010, 374, 3422- 3424 | | 9 | Gesztesy F , Holden H . Soliton Equations and Their Algebro-Geometric Solutions. Cambridge: Cambridge University Press, 2003 | | 10 | Belokolos E D , Bobenko A I , Enolskii V Z , et al. Algebro-Geometric Approach to Nonlinear Integrable Equations. Berlin: Springer, 1994 | | 11 | He G L , Geng X G , Wu L H . Algebro-geometric quasi-periodic solutions to the three-wave resonant interaction hierarchy. SIAM J Math Analy, 2014, 46, 1348- 1384 | | 12 | Anton I . Algebraic geometry and stability for integrable systems. Phys D, 2015, 291, 74- 82 | | 13 | Yang X J , Gao F , Srivastava H F . Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations. Comput Math Appl, 2017, 73, 203- 210 | | 14 | Fan E G . Extended tanh-function method and its applications to nonlinear equations. Phys Lett A, 2000, 277, 212- 218 | | 15 | Wang D S . Integrability of the coupled KdV equations derived from two-layer fluids:Prolongation structures and Miura transformations. Nonlinear Anal, 2010, 73, 270- 281 | | 16 | 郝晓红, 程智龙. 一类广义浅水波KdV方程的可积性研究. 数学物理学报, 2019, 39A (3): 451- 460 | | 16 | Hao X H , Cheng Z L . The integrability of the KdV-shallow water wave equation. Acta Math Sci, 2019, 39A, 451- 460 | | 17 | Geng X G , Lv Y Y . Darboux transformation for an integrable generalization of the nonlinear Schrodinger equation. Nonlinear Dyn, 2012, 69, 1621- 1630 | | 18 | Geng X G , He G L . Some new integrable nonlinear evolution equations and Darboux transformation. J Math Phys, 2010, 51, 033514 | | 19 | Zhao H Q , Yuan J Y , Zhu Z N . Integrable semi-discrete Kundu-Eckhaus Eequation:Darboux transformation, breather, rogue wave and continuous limit theory. J Nonlinear Sci, 2018, 28, 43- 68 | | 20 | Liu L , Wang D S , Han K . An integrable lattice hierarchy for Merola-Ragnisco-Tu Lattice:N-fold Darboux transformation and conservation laws. Commun Nonlinear Sci Numer Simulat, 2018, 63, 57- 71 | | 21 | Wang X , Wang L . Darboux transformation and nonautonomous solitons for a modified Kadomtsev-Petviashvili equation with variable coefficients. Comput Math Appl, 2018, 75, 4201- 4213 | | 22 | Sachs R L . On the integrable variant of the boussinesq system:Painlevé property, rational solutions, a relate many-body system, and equivalence with the AKNS hierarchy. Physica D, 1988, 30, 1- 27 | | 23 | Whitham G B . Linear and Nonlinear Waves. New York: Wiley, 1974 |
|