| 1 | 邵长旭, 刘树堂. 三种群捕食-食饵模型的分形特征与控制. 数学物理学报, 2019, 39A (4): 951- 962 | | 1 | Shao C X , Liu S T . Fractal feature and control of three-species predator-prey model. Acta Math Sci, 2019, 39A (4): 951- 962 | | 2 | 付盈洁, 蓝桂杰, 张树文, 魏春金. 污染环境下具有脉冲输入的随机捕食-食饵模型的动力学研究. 数学物理学报, 2019, 39A (3): 674- 688 | | 2 | Fu Y J , Lan G J , Zhang S W , Wei C J . Dynamics of a stochastic predator-prey model with pulse input in a polluted environment. Acta Math Sci, 2019, 39A (3): 674- 688 | | 3 | Sun X L , Yuan R , Wang L . Bifurcations in a diffusive predator-prey model with Beddington-DeAngelis functional response and nonselective harvesting. J Nonlinear Sci, 2019, 29: 287- 318 | | 4 | Chen X , Du Z J . Existence of positive periodic Solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse. Qual Theory Dyn Syst, 2018, 17: 67- 80 | | 5 | Ma Z P , Huo H F , Xiang H . Hopf bifurcation for a delayed predator-prey diffusion system with Dirichlet boundary condition. Appl Math Comput, 2017, 311: 1- 18 | | 6 | Negreanua M , Tellob J I . Global existence and asymptotic behavior of solutions to a Predator-Prey chemotaxis system with two chemicals. J Math Anal Appl, 2019, 474: 1116- 1131 | | 7 | Du Z J , Feng Z S . Existence and asymptotic behavior of traveling waves in a modified vector-disease model. Commun Pure Appl Anal, 2018, 17 (5): 1899- 1920 | | 8 | Lu S P , Ge W G . Existence of positive periodic solutions for neutral population model with multiple delays. Appl Math Comput, 2004, 153: 885- 902 | | 9 | Du Z J , Feng Z S , Zhang X N . Traveling wave phenomena of n-dimensional diffusive predator-prey systems. Nonlinear Anal Real World Appl, 2018, 41: 288- 312 | | 10 | Du Z J , Zhang X N , Zhu H P . Dynamics of nonconstant steady states of the Sel'kov model with saturation effect. J Nonlinear Sci, 2020, | | 11 | Kuang Y . Rich dynamics of Gauss-type ratio-dependent predator-prey systems. Field Inst Commun, 1999, 21: 325- 337 | | 12 | Pao C V . Dynamics of Lotka-Volterra competition reaction-diffusion systems with degenerate diffusion. J Math Anal Appl, 2015, 421: 1721- 1742 | | 13 | Gokmen E , Isik O R , Sezer M . Taylor collocation approach for delayed Lotka-Volterra predator-prey system. Appl Math Comput, 2015, 268: 671- 684 | | 14 | Wang K , Zhu Y L . Global attractivity of positive periodic solution for a Volterra model. Appl Math Comput, 2008, 203: 493- 501 | | 15 | Lv Y S , Du Z J . Existence and global attractivity of positive periodic solution to a Lotka-Volterra model with mutual interference and Holling Ⅲ type functional response. Nonlinear Anal Real World Appl, 2011, 12: 3654- 3664 | | 16 | Wang C Y , Li N , Zhou Y Q . On a multi-delay Lotka-Volterra predator-prey model with feedback controls and prey diffusion. Acta Math Sci, 2019, 39B (2): 429- 448 | | 17 | Holling C S . The functional response of predator to prey density and its role in mimicry and population regulation. Men Ent Sec Can, 1965, 45: 1- 60 | | 18 | Xia Y H , Cao J D , Cheng S S . Multiple periodic solutions of a delayed stage-structured predator-prey model with non-monotone functional responses. Appl Math Modelling, 2007, 31: 1947- 1959 | | 19 | Chen Y M . Multiple periodic solutions of delayed predator-prey systems with type IV functional responses. Nonlinear Anal Real World Appl, 2004, 5: 45- 53 | | 20 | Lakshmikantham V , Bainov D D , Simeonov P S . Theory of Impulsive Differential Equations. New Jersey: World Scientific Publishing Co, 1989 | | 21 | Du Z J , Feng Z S . Periodic solutions of a neutral impulsive predator-prey model with Beddington-DeAngelis functional response with delays. J Comput Appl Math, 2014, 258: 87- 98 | | 22 | Xia Y H , Han M A . Multiple periodic solutions of a ratio-dependent predator-prey model. Chaos Sol Fra, 2009, 39: 1100- 1108 | | 23 | Wang Q , Dai B X , Chen Y M . Multiple periodic solutions of an impulsive predator-prey model with Holling-type IV functional response. Math Comput Modelling, 2009, 49: 1829- 1836 | | 24 | 葛渭高. 非线性常微分方程边值问题. 北京: 科学出版社, 2007 | | 24 | Ge W G . Boundary Value Problems for Nonlinear Ordinary Differential Equations. Beijing: Science Press, 2007 | | 25 | Gaines R E , Mawhin J L . Coincidence Degree and Nonlinear Differential Equations. Berlin: Springer-Verlag, 1977 |
|