| 1 | Bresch D , Desjardins B , Lin C . On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Commmun Part Diffe Equ, 2003, 28, 843- 868 | | 2 | Cahn J , Hilliard J . Free energy of a nonuniform system, I. Interfacial free energy. J Chem Phys, 1998, 28, 258- 267 | | 3 | Dunn J , Serrin J . On the thermomechanics of interstitial working. Arch Ration Mech Anal, 1985, 88, 95- 133 | | 4 | Danchin R , Muchab P . Compressible Navier-Stokes system: Large solutions and incompressible limit. Adv Math, 2017, 320, 904- 925 | | 5 | Fang D , Zhang T , Zi R . Global solutions to the isentropic compressible Navier-Stokes equations with a class of large initial data. SIAM J Math Anal, 2018, 50 (5): 4983- 5026 | | 6 | Gurtin M , Poligone D , Vinals J . Two-phases binary fluids and immiscible fluids described by an order parameter. Math Models Methods Appl Sci, 1996, 6, 815- 831 | | 7 | Hattori H , Li D . Solutions for two-dimensional system for materials of Korteweg type. SIAM J Math Anal, 1994, 25, 85- 98 | | 8 | Hattori H , Li D . Global solutions of a high-dimensional system for Korteweg materials. J Math Anal Appl, 1996, 198, 84- 97 | | 9 | Haspot B . Existence of global strong solution for Korteweg system with large infinite energy initial data. J Math Anal Appl, 2016, 438, 395- 443 | | 10 | Haspot B . Global strong solution for the Korteweg system with quantum pressure in dimension N ≥ 2. Math Ann, 2017, 367, 667- 700 | | 11 | Haspot B . Global existence of strong solution for viscous shallow water system with large initial data on the irrotational part. J Differ Equ, 2017, 262, 4931- 4978 | | 12 | Haspot B . Existence of global weak solution for compressible fluid models of Korteweg type. J Math Fluid Mech, 2011, 13, 223- 249 | | 13 | Hoff D . Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data. Trans Amer Math Soc, 1987, 303 (1): 169- 181 | | 14 | Hoff D . Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data. J Differ Equ, 1995, 120, 215- 254 | | 15 | Hoff D . Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch Ration Mech Anal, 1995, 132, 1- 14 | | 16 | Hoff D . Discontinuous solutions of the Navier-Stokes equations for multidimensional heat-conducting flow. Arch Ration Mech Anal, 1997, 139, 303- 354 | | 17 | Huang X , Li J . Global well-posedness of classical solutions to the Cauchy problem of two-dimesional baratropic compressible Navier-Stokes system with vacuum and large initial data. J Math Pures Appl, 2016, 106, 123- 154 | | 18 | Jiu Q , Wan Y , Xin Z . Global classical solution to two-dimensional compressible Navier-Stokes equations with large data in $ \mathbb{R}.2$. Phys D, 2018, 376/377, 180- 194 | | 19 | Jüngel A . Global weak solutions to compressible Navier-Stokes equations for quantum fluids. SIAM J Math Anal, 2010, 42, 1025- 1045 | | 20 | Kotschote M . Strong solutions for a compressible fluid model of Korteweg type. Ann Inst H Poincaré Anal Nonlinéaire, 2008, 25, 679- 696 | | 21 | Kazhikhov A , Shelukhin V . Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J Appl Math Mech, 1977, 41 (2): 273- 282 | | 22 | Lei Z , Lin F , Zhou Y . Structure of helicity and global solutions of incompressible Navier-Stokes equation. Arch Ration Mech Anal, 2015, 218, 1417- 1430 | | 23 | Li J , Yu Y , Zhu W . A class large solution of the 3D Hall-magnetohydrodynamic equations. J Differ Equ, 2020, 268, 5811- 5822 | | 24 | Mellet A , Vasseur A . Existence and uniqueness of global strong solutions for one dimensional compressible Navier-Stokes equations. SIAM J Math Anal, 2007, 39 (4): 1344- 1365 | | 25 | Majda A , Bertozzi A . Vorticity and Incompressible Flow. Cambridge: Cambridge University Press, 2001 | | 26 | Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 20(1): 67-104 | | 27 | Perepelitsa M . On the global existence of weak solutions for the Navier-Stokes equations of compressible fluid flows. SIAM J Math Anal, 2006, 38 (4): 1126- 1153 | | 28 | Serre D . Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible. C R Acad Sci Paris Sér I Math, 1986, 303 (13): 639- 642 | | 29 | Serre D . Sur l'équation monodimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur. C R Acad Sci Paris Sér I Math, 1986, 303 (14): 703- 706 | | 30 | Triebel H . Theory of Function Spaces. Basel: Birkh?user, 1983 | | 31 | Vaigant V , Kazhikhov A . On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscous fluid. J Sib Math, 1995, 36 (6): 1283- 1316 | | 32 | Tan Z , Wang Y . Large time behavior of solutions to the isentropic compressible fluid models of Korteweg type in $ \mathbb{R}.3$. Commun Math Sci, 2012, 10 (4): 1207- 1223 |
|