数学物理学报 ›› 2021, Vol. 41 ›› Issue (5): 1428-1444.
收稿日期:
2020-01-08
出版日期:
2021-10-26
发布日期:
2021-10-08
通讯作者:
方钟波
E-mail:Lzhiqing1005@163.com;fangzb7777@hotmail.com
作者简介:
刘志卿, E-mail: 基金资助:
Zhiqing Liu1(),Zhongbo Fang2,*(
)
Received:
2020-01-08
Online:
2021-10-26
Published:
2021-10-08
Contact:
Zhongbo Fang
E-mail:Lzhiqing1005@163.com;fangzb7777@hotmail.com
Supported by:
摘要:
该文考虑一类记忆核不一定递减的线性粘弹性波动方程振动传递问题的渐近行为.通过构造新的Lyapunov泛函,导出问题能量的一般衰减估计值.同时,举例说明主要结论中包括指数、代数及对数等一致衰减估计.
中图分类号:
刘志卿,方钟波. 具有不一定递减核的线性粘弹性波动方程振动传递问题的一般衰减估计[J]. 数学物理学报, 2021, 41(5): 1428-1444.
Zhiqing Liu,Zhongbo Fang. General Decay for the Transmission Problem of Viscoelastic Waves with not Necessarily Decreasing Kernel[J]. Acta mathematica scientia,Series A, 2021, 41(5): 1428-1444.
1 |
Marzocchi A , Mutõz Rivera J E , Grazia Naso M . Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity. Math Method Appl Sci, 2002, 25 (11): 955- 980
doi: 10.1002/mma.323 |
2 |
Marzocchi A , Grazia Naso M . Transmission problem in thermoelasticity with symmetry. IMA J Appl Math, 2003, 68 (1): 23- 46
doi: 10.1093/imamat/68.1.23 |
3 | Bastos W D , Raposo C A . Transmission problem for waves with frictional damping. Electron J Differ Equa, 2007, 2007 (60): 1- 10 |
4 |
Mutõz Rivera J E , Oquendo H P . The transmission problem of viscoelastic waves. Acta Appl Math, 2000, 62, 1- 21
doi: 10.1023/A:1006449032100 |
5 | Andrade D , Fatori L H , Mutõz Rivera J E . Nonlinear transmission problem with a dissipative boundary condition of memory type. Electron J Differ Eq, 2006, 2006 (53): 1- 16 |
6 |
Alves M S , Raposo C A , Mutõz Rivera J E , Sepulveda M , Villagrán O V . Uniform stabilization for the transmission problem of the Timoshenko system with memory. J Math Anal Appl, 2010, 369 (1): 323- 345
doi: 10.1016/j.jmaa.2010.02.045 |
7 | Li G , Wang D , Zhu B . Well-posedness and decay of solutions for a transmission problem with history and delay. Electron J Differ Equa, 2016, 2016 (23): 1- 21 |
8 | Zitouni S , Ardjouni A , Zennir K , Amiar R . Well-posedness and decay of solution for a transmission problem in the presence of infinite history and varying delay. Nonlinear Studies, 2018, 25 (2): 445- 465 |
9 | Medjden M , Tatar N E . Asymptotic behavior for a viscoelastic problem with not necessarily decreasing kernel. Appl Math Comput, 2005, 167 (2): 1221- 1235 |
10 |
Kafini M , Tatar N E . A decay result to a viscoelastic problem in with an oscillating kernel. J Math Phys, 2010, 51 (7): 073506
doi: 10.1063/1.3458600 |
11 | Djebabla A , Tatar N E . Exponential stabilization of the Timoshenko system by a thermal effect with an oscillating kernel. Math Comput Model, 2011, 54 (1/2): 301- 314 |
12 | Mesloub F , Boulaaras S . General decay for a viscoelastic problem with not necessarily decreasing kernel. J Appl Math Comput, 2018, 58 (1/2): 647- 665 |
13 |
Ouchenane D , Boulaara S , Mesloub F . General decay for a class of viscoelastic problem with not necessarily decreasing kernel. Appl Anal, 2019, 98 (9): 1677- 1693
doi: 10.1080/00036811.2018.1437421 |
[1] | 王汉义, 黄诗雨, 向建林. 一类Kirchhoff型椭圆方程的山路解和基态解[J]. 数学物理学报, 2025, 45(4): 1041-1057. |
[2] | 寿晓华, 钟新. 三维非等温可压缩向列型液晶流的Serrin准则[J]. 数学物理学报, 2025, 45(4): 1058-1076. |
[3] | 朱伟鹏, 李金禄, 吴星. 带阻尼Boussinesq方程的一类大初值整体光滑解[J]. 数学物理学报, 2025, 45(4): 1077-1085. |
[4] | 左文文, 周寿明. 带源项的抛物-抛物高维 Keller-Segel 方程的全局解[J]. 数学物理学报, 2025, 45(4): 1100-1109. |
[5] | 孙泽欣, 张丽, 包雄雄. 高维时空周期媒介中部分退化模型的传播速度[J]. 数学物理学报, 2025, 45(4): 1110-1127. |
[6] | 涂坤, 丁惠生. Banach 空间上半线性非自治发展方程的伪轨跟踪性[J]. 数学物理学报, 2025, 45(4): 1144-1160. |
[7] | 吕东霆. 两种群空间非均匀反应扩散竞争模型的全局渐近稳定性[J]. 数学物理学报, 2025, 45(4): 1171-1183. |
[8] | 曾夏萍, 卢文雯, 庞国萍, 梁志清. 具有季节性切换反应及脉冲扰动的鱼类单种群动力学模型[J]. 数学物理学报, 2025, 45(4): 1206-1216. |
[9] | 刘羽, 陈光淦, 李树勇. 随机 Kuramoto-Sivashinsky 方程行波解的非线性稳定[J]. 数学物理学报, 2025, 45(3): 790-806. |
[10] | 付慧洁, 许美珍. 边界条件含有谱参数的不连续二阶微分算子的 |
[11] | 冯振东, 郭飞, 李岳群. 一类半线性波动方程弱耦合系统解的破裂[J]. 数学物理学报, 2025, 45(3): 726-747. |
[12] | 鹿高杰, 韩众, 刘露. 非局域反时空高阶非线性薛定谔方程的达布变换及其精确解[J]. 数学物理学报, 2025, 45(3): 767-775. |
[13] | 吴鹏, 张帅, 方诚. 一类具有非局部扩散和空间异质性年龄-空间结构松材线虫病模型动力学分析[J]. 数学物理学报, 2025, 45(3): 946-959. |
[14] | 李倩, 邢艳元. 具有阻尼项的粘弹性波动方程解的高能爆破[J]. 数学物理学报, 2025, 45(3): 748-755. |
[15] | 郑焰萍, 沈建和. 一类带 Allee 效应的多尺度反应-扩散系统的波前解[J]. 数学物理学报, 2025, 45(3): 776-789. |
|