数学物理学报 ›› 2021, Vol. 41 ›› Issue (6): 1880-1896.
收稿日期:
2020-09-20
出版日期:
2021-12-26
发布日期:
2021-12-02
通讯作者:
杨晓侠
E-mail:yangxiaoxia1014@163.com
基金资助:
Received:
2020-09-20
Online:
2021-12-26
Published:
2021-12-02
Contact:
Xiaoxia Yang
E-mail:yangxiaoxia1014@163.com
Supported by:
摘要:
利用Wilson元研究了Extended Fisher-Kolmogorov(EFK)方程的间断有限元逼近格式.在不需要后处理技术的前提下,通过对非线性项采用新的分裂技术,分别得到了半离散和线性化欧拉全离散格式下原始变量
中图分类号:
杨晓侠,张厚超. Extended Fisher-Kolmogorov方程的间断有限元分析[J]. 数学物理学报, 2021, 41(6): 1880-1896.
Xiaoxia Yang,Houchao Zhang. Discontinuous Galerkin Finite Element Analysis of for the Extended Fisher-Kolmogorov Equation[J]. Acta mathematica scientia,Series A, 2021, 41(6): 1880-1896.
表 1
$t = 1$时的数值计算结果($\tau = h^2)$"
收敛阶 | 收敛阶 | |||
0.000046035 | — | 0.005970921 | — | |
0.000012875 | 1.8381 | 0.001790764 | 1.7374 | |
0.000003264 | 1.9799 | 0.000472460 | 1.9223 | |
0.000000793 | 2.0417 | 0.000117908 | 2.0025 | |
0.000000195 | 2.0240 | 0.000029285 | 2.0094 |
1 |
Coullet P , Elphick C , Repaux D . Nature of spatial chaos. Physical Review Letters, 1987, 58 (5): 431- 434
doi: 10.1103/PhysRevLett.58.431 |
2 |
Dee G T , Van Saarloos W . Bistable systems with propagating fronts leading to pattern foration. Physical Review Letters, 1988, 60 (25): 2641- 2644
doi: 10.1103/PhysRevLett.60.2641 |
3 |
Van Saarloos W . Dynamical velocity selection: marginal stability. Physical Review Letters, 1987, 58 (24): 2571- 2574
doi: 10.1103/PhysRevLett.58.2571 |
4 |
Van Saarloos W . Front propagation into unstable states: marginal stability as a dynamical mechanism for velocity selection. Physical Review A, 1988, 37 (1): 211- 229
doi: 10.1103/PhysRevA.37.211 |
5 |
Danumjaya P , Pani A K . Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation. Journal of Computational and Applied Mathematics, 2005, 174 (1): 101- 117
doi: 10.1016/j.cam.2004.04.002 |
6 |
Onyejekwe O . A direct implementation of a modified boundary integral formulationation for the extended Fisher-Kolmogorov equation. Journal of Applied Mathematics and Physics, 2015, 3 (10): 1262- 1269
doi: 10.4236/jamp.2015.310155 |
7 |
Danumjaya P . Finite element methods for one dimensional fourth order semilinear partial differential equation. International Journal of Applied and Computational Mathematics, 2016, 2 (3): 395- 410
doi: 10.1007/s40819-015-0068-0 |
8 | Khiari N , Omrani K . Finite difference discretization of the extended Fisher-Kolmogorov equation in two dimensions. Computers & Mathematics with Applications, 2011, 62 (11): 4151- 4160 |
9 | He D D . On the $L^{\infty}$-norm convergence of a three-level linearly implicit finite difference method for the extended Fisher-Kolmogorov equation in both 1D and 2D. Computers & Mathematics with Applications, 2016, 71 (12): 2594- 2607 |
10 | Liu F N, Zhao X P, Liu B. Fourier pseudo-spectral method for the extended Fisher-Kolmogorov equation in two dimensions. Advances in Difference Equations, 2017, Article number: 94 |
11 | Danumjaya P , Pani A K . Numerical methods for the extended Fisher-Kolmogorov(EFK) equation. International Journal of Numerical Analysis and Modeling, 2006, 3 (2): 186- 210 |
12 |
Danumjaya P , Pani A K . Mixed finite element methods for a fourth order reaction diffusion equation. Numerical Methods for Partial Differential Equations, 2012, 28 (4): 1227- 1251
doi: 10.1002/num.20679 |
13 | Wang J F , Li H , Siriguleng H , et al. A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation. The Scientific World Journal, 2013, 2013 (1): 202- 212 |
14 | 张厚超, 王俊俊, 石东洋. Extended Fisher-Kolmogorov方程的一类低阶非协调混合有限元方法. 数学物理学报, 2018, 38A (3): 571- 587 |
Zhang H C , Wang J J , Shi D Y . A type of new lower order nonconforming mixed finite elements methods for the extended Fisher-Kolmogorov equation. Acta Mathematica Scientia, 2018, 38A (3): 571- 587 | |
15 | 张厚超, 石东洋. EFK方程一个新的低阶非协调混合有限元方法的高精度分析. 高校应用数学学报, 2017, 32A (4): 437- 454 |
Zhang H C , Shi D Y . High accuracy analysis of a new low order nonconforming mixed finite element method for the EFK equation. Applied Mathematics: A Journal of Chinese Universities, 2017, 32A (4): 437- 454 | |
16 | 石钟慈. 关于Wilson元的最佳收敛阶. 计算数学, 1986, (2): 159- 163 |
Shi Z C . A remark on the optimal order of convergence of Wilson's nonconforming element. Mathematica Numerica Sinica, 1986, (2): 159- 163 | |
17 |
Shi Z C . A convergengce condition for the quadrilateral Wilson element. Numerische Mathematik, 1984, 44 (3): 349- 361
doi: 10.1007/BF01405567 |
18 | 江金生, 程晓良. 二阶问题的一个类Wilson非协调元. 计算数学, 1992, (3): 274- 278 |
Jiang J S , Cheng X L . A nonconforming element like wilson's for second-order problems. Mathematica Numerica Sinica, 1992, (3): 274- 278 | |
19 |
Chen S C , Shi D Y . Accuracy analysis for quasi-Wilson element. Acta Mathematica Scientia, 2000, 20 (1): 44- 48
doi: 10.1016/S0252-9602(17)30730-0 |
20 |
Shi D Y , Zhang D . Approximation of nonconforming Quasi-Wilson element for Sine-Gordon equations. Journal of Computational Mathematics, 2013, 31 (3): 271- 282
doi: 10.4208/jcm.1212-m3897 |
21 | Shi D Y , Zhao Y M , Wang F L . Quasi-Wilson nonconforming element approximation for nonlinear dual phase lagging heat conduction equations. Applied Mathematics and Computation, 2014, 243 (17): 454- 464 |
22 |
Shi D Y , Wang F L , Zhao Y M . Superconvergence analysis and extrapolation of quasi-Wilson nonconforming finite element method for nonlinear Sobolev equations. Acta Mathematicae Applicatae Sinica, 2013, 29 (2): 403- 414
doi: 10.1007/s10255-013-0216-4 |
23 |
Shi D Y , Pei L F . Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations. Applied Mathematics and Computation, 2013, 219 (17): 9447- 9460
doi: 10.1016/j.amc.2013.03.008 |
24 | 宋士仓, 苏恒迪, 雷蕾. Wilson元求解二阶椭圆问题的一种新格式. 高等学校计算数学学报, 2015, 37 (2): 156- 165 |
Song S C , Su H D , Lei L . A new scheme of wilson element for second-order elliptic problems. Numerical Mathematics: A Journal of Chinese Universities, 2015, 37 (2): 156- 165 | |
25 |
Song S C , Sun M , Jiang L Y . A nonconforming scheme to solve the parabolic problem. Applied Mathematics and Computation, 2015, 265, 108- 119
doi: 10.1016/j.amc.2015.04.089 |
26 | Douglas J, Dupont T. Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. Berlin: Springer, 1976 |
27 | 杨晓侠, 李永献. 黏弹性方程的Wilson元收敛性分析. 应用数学, 2018, 31 (3): 513- 521 |
Yang X X , Li Y X . Convergence analysis of Wilson element for viscoelasticity type equations. Mathematica Applicata, 2018, 31 (3): 513- 521 | |
28 | 梁聪刚, 杨晓侠, 石东洋. 抛物积分微分方程的Wilson元收敛性分析. 数学物理学报, 2019, 39A (5): 1158- 1169 |
Liang C G , Yang X X , Shi D Y . Convergence analysis of Wilson element for parabolic integro-differential equation. Acta Mathematica Scientia, 2019, 39A (5): 1158- 1169 | |
29 |
Shi D Y , Ren J C . Nonconforming mixed finite element approximation to the stationary Navier-Stokes equations on anisotropic meshes. Nonlinear Analysis: TMA, 2009, 71 (9): 3842- 3852
doi: 10.1016/j.na.2009.02.047 |
30 | Hale J K. Ordinary Diffrential Equations. New York: Wiley-Interscience, 1969 |
31 | 张铁. 间断有限元理论与方法. 北京: 科学出版社, 2012 |
Zhang T . The Theory and Method of Discotinuous Finite Element. Beijing: Science Press, 2012 | |
32 | 孟雄, 舒期望, 杨扬. 发展型偏微分方程间断有限元方法的超收敛性. 中国科学, 2015, 45 (7): 1041- 1060 |
Meng X , Shu Q W , Yang Y . Superconvergence of discontinuous Galerkin methods for time-dependent partial differential equations. Scientia Sinica Mathematica, 2015, 45 (7): 1041- 1060 | |
33 | 曹外香, 张智民. 解一维双曲守恒律方程和抛物方程的间断有限元法的逐点和区间平均值误差估计. 中国科学, 2015, 45 (8): 1115- 1132 |
Cao W X , Zhang Z M . Point-wise and cell average error estimates of the DG and LDG methods for 1D hyperbolic and parabolic equations. Scientia Sinica Mathematica, 2015, 45 (8): 1115- 1132 |
[1] | 王琼琼, 唐嘉. 基于切比雪夫多项式加速求解 PageRank 的类海森伯格算法[J]. 数学物理学报, 2025, 45(4): 1291-1300. |
[2] | 于冬梅, 刘大熠. 求解广义互补问题的 Levenberg-Marquardt 算法[J]. 数学物理学报, 2025, 45(4): 1311-1326. |
[3] | 马昌凤, 谢亚君, 卜凡. 求解Stein张量方程的张量格式BCGSTAB算法[J]. 数学物理学报, 2024, 44(6): 1652-1664. |
[4] | 王俊杰. 空间分数阶 KGS 方程组的辛差分格式[J]. 数学物理学报, 2024, 44(5): 1319-1334. |
[5] | 马小军, 陈富, 贾芝福. 基于非 Lipschitz 步长策略的临近分裂可行问题的强收敛性研究[J]. 数学物理学报, 2024, 44(4): 1052-1065. |
[6] | 简金宝, 代钰, 尹江华. 分裂可行性问题的一个惯性共轭梯度投影法[J]. 数学物理学报, 2024, 44(4): 1066-1079. |
[7] | 聂佳琳, 龙宪军. 求解非光滑鞍点问题的黄金比率原始对偶算法[J]. 数学物理学报, 2024, 44(4): 1080-1091. |
[8] | 张潇, 张宏武. 分数阶椭圆方程反边值问题的分数 Tikhonov 正则化方法[J]. 数学物理学报, 2024, 44(4): 978-993. |
[9] | 蔡宇, 周光辉. 一种 WYL 型谱共轭梯度法的全局收敛性[J]. 数学物理学报, 2024, 44(1): 173-184. |
[10] | 简金宝,林惠,马国栋. 大规模非凸不可分优化问题的分裂序列二次规划算法[J]. 数学物理学报, 2023, 43(4): 1284-1296. |
[11] | 于一康,牛晶. 一类椭圆型界面问题的数值算法[J]. 数学物理学报, 2023, 43(3): 883-895. |
[12] | 刘鹏杰, 吴彦强, 邵枫, 张艳, 邵虎. 两个带重启方向的改进 HS 型共轭梯度法[J]. 数学物理学报, 2023, 43(2): 570-580. |
[13] | 谢亚君,马昌凤. 源于自由边值离散的弱非线性互补问题的m+1阶收敛性算法[J]. 数学物理学报, 2022, 42(5): 1506-1516. |
[14] | 许文丁,钟婷. 非光滑牛顿算法的收敛性[J]. 数学物理学报, 2022, 42(5): 1537-1550. |
[15] | 黄媛,支越,康彤,王然,张红. 非线性感应加热问题的全离散有限元方法[J]. 数学物理学报, 2022, 42(4): 1238-1255. |
|