数学物理学报 ›› 2021, Vol. 41 ›› Issue (6): 1980-1992.
• 论文 • 上一篇
收稿日期:
2020-11-30
出版日期:
2021-12-26
发布日期:
2021-12-02
通讯作者:
张道祥
E-mail:1921011863@ahnu.edu.cn;18955302433@163.com
作者简介:
孙悦, E-mail: 基金资助:
Yue Sun(),Daoxiang Zhang*(
),Wen Zhou
Received:
2020-11-30
Online:
2021-12-26
Published:
2021-12-02
Contact:
Daoxiang Zhang
E-mail:1921011863@ahnu.edu.cn;18955302433@163.com
Supported by:
摘要:
该文结合理论推导和数值模拟两个方面研究了带有恐惧效应和时滞效应的反应扩散捕食-食饵模型的动力学.首先研究了系统的正平衡点的存在性和稳定性.其次,通过线性稳定性分析研究了系统的Hopf分支问题,结果表明恐惧效应影响Hopf分支点,继而影响着系统的稳定区间.最后,通过数值模拟验证了理论结果,并发现恐惧效应与稳定区间的非线性关系,即随着恐惧效应的持续增加,系统将会由稳定状态变为不稳定状态,再变为稳定状态.
中图分类号:
孙悦,张道祥,周文. 恐惧效应对带时滞的反应扩散捕食系统的稳定区间的影响[J]. 数学物理学报, 2021, 41(6): 1980-1992.
Yue Sun,Daoxiang Zhang,Wen Zhou. The Influence of Fear Effect on Stability Interval of Reaction-Diffusion Predator-Prey System with Time Delay[J]. Acta mathematica scientia,Series A, 2021, 41(6): 1980-1992.
表 1
系统(1.3)的参数: $r = 6, d = 0.2, a = 1, b = 5, q = 2, c = 2.5, m_{1} = 0.4, $ $ m_{2} = 1, d_{1} = 0.01, d_{2} = 0.1. $恐惧效应与Hopf分支和平衡点的关系表"
恐惧交应 | Hopf分支临界值 | 平衡点 |
2 | 6.0441 | (1.5819, 0.6418) |
3 | 1.9491 | (1.2469, 0.5458) |
6 | 1.2727 | (0.9279, 0.3908) |
8 | 1.2269 | (0.8453, 0.3354) |
9.7 | 1.2199 | (0.7997, 0.3015) |
10 | 1.2201 | (0.7931, 0.2964) |
10.3 | 1.2205 | (0.7868, 0.2915) |
11 | 1.2222 | (0.7733, 0.2808) |
13 | 1.2308 | (0.7416, 0.2548) |
20 | 1.2732 | (0.6748, 0.1958) |
30 | 1.3265 | (0.6269, 0.1501) |
40 | 1.3665 | (0.5997, 0.1229) |
60 | 1.4222 | (0.5690, 0.0913) |
80 | 1.4572 | (0.5517, 0.0730) |
100 | 1.4822 | (0.5405, 0.0610) |
1 |
Liana Y Z , Aija F W , Marek C A , et al. Perceived predation risk reduces the number of offspring songbirds produce per year. Science, 2011, 334 (6061): 1398- 1401
doi: 10.1126/science.1210908 |
2 |
Michael C , Michael J S , Liana Y Z . Predator-induced stress and the ecology of fear. Functional Ecology, 2013, 27 (1): 56- 65
doi: 10.1111/1365-2435.12007 |
3 |
Sönke E , Michael G , Jan E . Predator-induced plasticity in nest visitation rates in the Siberian jay (Perisoreus infaustus). Behavioral Ecology, 2005, 16 (1): 309- 315
doi: 10.1093/beheco/arh163 |
4 | Sönke E , Michael G , Magdalena N , et al. Predation risk induces changes in nest-site selection and clutch size in the Siberian jay. Proceedings: Biological Sciences, 2006, 273 (1587): 701- 706 |
5 |
Cameron K G , Susana I P , Thomas E M . Plasticity of parental care under the risk of predation: how much should parents reduce care?. Biology Letters, 2013, 9 (4): 20130154
doi: 10.1098/rsbl.2013.0154 |
6 | Hua F Y , Robert J F , Kathryn E S , et al. Too risky to settle: avian community structure changes in response to perceived predation risk on adults and offspring. Proceedings: Biological Sciences, 2013, 280 (1764): 20130762 |
7 |
Hua F Y , Kathryn E S , Robert J F , et al. Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance. Behavioral Ecology, 2014, 25 (3): 509- 519
doi: 10.1093/beheco/aru017 |
8 |
Fontaine J J , Martin T E . Parent birds assess nest predation risk and adjust their reproductive strategies. Ecology Letters, 2006, 9 (4): 428- 434
doi: 10.1111/j.1461-0248.2006.00892.x |
9 | Orrock J L , Fletcher R J . An island-wide predator manipulation reveals immediate and long-lasting matching of risk by prey. Proceedings Biological Sciences, 2014, 281 (1784): 20140391 |
10 |
Ibáñez-Álamo J D , Soler M . Predator-induced female behavior in the absence of male incubation feeding: an experimental study. Behavioral Ecology and Sociobiology, 2012, 66 (7): 1067- 1073
doi: 10.1007/s00265-012-1357-9 |
11 |
Creel S , Christianson D , Liley S , et al. Predation risk affects reproductive physiology and demography of elk. Science, 2007, 315 (5814): 960- 960
doi: 10.1126/science.1135918 |
12 |
Michael J S , Charles J K , Rudy B . The sensitive hare: Sublethal effects of predator stress on reproduction in snowshoe hares. Journal of Animal Ecology, 2009, 78 (6): 1249- 1258
doi: 10.1111/j.1365-2656.2009.01552.x |
13 |
Aaron J W , William J R . A comparison of shark and wolf research reveals similar behavioral responses by prey. Frontiers in Ecology and the Environment, 2011, 9 (6): 335- 341
doi: 10.1890/090226 |
14 |
Wang X Y , Liana Z , Zou X F . Modelling the fear effect in predator-prey interactions. Journal of Mathematical Biology, 2016, 73 (5): 1179- 1204
doi: 10.1007/s00285-016-0989-1 |
15 | 闫建博, 刘贤宁. 具有Beddington-DeAngelis功能反应及恐惧效应的捕食系统. 西南大学学报(自然科学版), 2018, 40 (6): 109- 114 |
Yan J B , Liu X N . A predator-prey system with Beddington-DeAngelis functional response and fear effect. Journal of Southwest University (Natural Science Edition), 2018, 40 (6): 109- 114 | |
16 | 夏青艳, 张睿. 具有恐惧效应的Ⅰ类功能性反应的捕食系统. 四川轻化工大学学报(自然科学版), 2020, 33 (1): 82- 87 |
Xia Q Y , Zhang R . Predation systems with a class Ⅰ functional response to the fear effect. Journal of Sichuan University of Science & Engineering(Natural Science Edition), 2020, 33 (1): 82- 87 | |
17 |
Pal S , Pal N , Samanta S , et al. Fear effect in prey and hunting cooperation among predators in a Leslie-Gower model. Mathematical Biosciences and Engineering: MBE, 2019, 16 (5): 5146- 5179
doi: 10.3934/mbe.2019258 |
18 | Dai B X , Sun G X . Turing-Hopf bifurcation of a delayed diffusive predator-prey system with chemotaxis and fear effect. Applied Mathematics Letters, 2021, 111 (8): 1- 8 |
19 |
Wang X Y , Zou X F . Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences and Engineering: MBE, 2018, 15 (3): 775- 805
doi: 10.3934/mbe.2018035 |
20 | Chen S S , Lin Z H , Shi J P . Nonexistence of nonconstant positive steady states of a diffusive predator-prey model with fear effect. Communications on Pure & Applied Analysis, 2018, 1 (1): 47- 56 |
21 |
李海银. 密度制约且具有时滞捕食-被捕食模型的Hopf分支. 数学物理学报, 2019, 39 (2): 358- 371
doi: 10.3969/j.issn.1003-3998.2019.02.015 |
Li H Y . Hopf bifurcation of delayed density-dependent predator-prey model. Acta Mathematica Scientia, 2019, 39 (2): 358- 371
doi: 10.3969/j.issn.1003-3998.2019.02.015 |
|
22 |
Zhao H Y , Zhang X B , Huang X X . Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion. Applied Mathematics and Computation, 2015, 266, 462- 480
doi: 10.1016/j.amc.2015.05.089 |
23 |
Pijush P , Sudip S , Nikhil P , et al. Delay induced multiple stability switch and chaos in a predator-prey model with fear effect. Mathematics and Computers in Simulation, 2020, 172, 134- 158
doi: 10.1016/j.matcom.2019.12.015 |
24 | 张道祥, 孙光讯, 马媛, 等. 带有Holling Ⅲ功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图. 山东大学学报(理学版), 2018, 53 (4): 85- 94 |
Zhang D X , Sun G X , Ma Y , et al. Hopf bifurcation and spatial patterns in a delayed diffusive predator-prey system with Holling Ⅲ functional response and linear harvesting effect. Journal of Shandong University (Natural Science), 2018, 53 (4): 85- 94 |
[1] | 倪思妍, 邹天芳, 赵才地. 格点时滞反应扩散方程的拉回吸引子与不变测度[J]. 数学物理学报, 2025, 45(4): 1128-1143. |
[2] | 吕东霆. 两种群空间非均匀反应扩散竞争模型的全局渐近稳定性[J]. 数学物理学报, 2025, 45(4): 1171-1183. |
[3] | 祝鹏, 陈艳萍, 徐先宇. 非均匀网格上时间分数阶扩散—波动方程的 BDF2 型有限元方法[J]. 数学物理学报, 2025, 45(4): 1268-1290. |
[4] | 武文斌, 任雪, 张冉. 具有时滞的离散扩散疫苗接种模型的行波解[J]. 数学物理学报, 2025, 45(3): 858-874. |
[5] | 任红越, 周立群. 一类比例时滞随机神经网络的均方指数同步及应用[J]. 数学物理学报, 2025, 45(3): 888-901. |
[6] | 李雅芝, 刘利利, 田妍妮. 考虑扩散的SVEITR肺结核传播模型的最优控制策略[J]. 数学物理学报, 2025, 45(3): 934-945. |
[7] | 吴鹏, 张帅, 方诚. 一类具有非局部扩散和空间异质性年龄-空间结构松材线虫病模型动力学分析[J]. 数学物理学报, 2025, 45(3): 946-959. |
[8] | 刘辉,林琳,孙成峰. 具有分数阶耗散的三维温度相关不可压缩 MHD-Boussinesq 方程的全局强解[J]. 数学物理学报, 2025, 45(2): 418-433. |
[9] | 杨咏丽, 杨赟瑞. 非局部扩散的时空时滞霍乱传染病系统的行波解[J]. 数学物理学报, 2025, 45(1): 110-135. |
[10] | 吕学琴, 何松岩, 王世宇. 基于再生核和有限差分法求解变系数时间分数阶对流扩散方程[J]. 数学物理学报, 2025, 45(1): 153-164. |
[11] | 吴鹏, 方诚. 具有非局部扩散和空间异质性的年龄-空间结构HIV潜伏感染模型的动力学分析[J]. 数学物理学报, 2025, 45(1): 279-294. |
[12] | 刘佳, 包雄雄. 非局部时滞扩散方程棱锥形波前解的渐近稳定性[J]. 数学物理学报, 2025, 45(1): 44-53. |
[13] | 肖江龙, 宋永利, 夏永辉. 一个扩散模型中恐惧效应与集群行为协同诱导的时空动力学研究[J]. 数学物理学报, 2024, 44(6): 1577-1594. |
[14] | 唐俊, 吴爱龙. 一类随机时滞非线性系统的事件触发控制[J]. 数学物理学报, 2024, 44(6): 1607-1616. |
[15] | 樊天娇, 冯立超, 杨艳梅. 不等式的推广以及在加性时变时滞系统中的应用[J]. 数学物理学报, 2024, 44(5): 1335-1351. |
|