数学物理学报 ›› 2022, Vol. 42 ›› Issue (1): 187-200.
收稿日期:
2021-01-11
出版日期:
2022-02-26
发布日期:
2022-02-23
通讯作者:
张磊
E-mail:zhanglei@hlju.edu.cn
基金资助:
Qingchun Meng1,2,Lei Zhang1,*()
Received:
2021-01-11
Online:
2022-02-26
Published:
2022-02-23
Contact:
Lei Zhang
E-mail:zhanglei@hlju.edu.cn
Supported by:
摘要:
该文考虑一类三维逆时热传导问题的数值解法.基于有限差分时间离散,并结合伽辽金(Galerkin)方法对空间进行有限元离散,导出刚度矩阵及载荷向量,对热传导问题进行数值求解.针对反问题,利用分离变量法建立T时刻温度场与初始温度场之间的对应关系,给出了反演公式,并在一定先验假设条件下证明了反问题的局部稳定性.为克服反问题求解的不适定性,使用吉洪诺夫(Tikhonov)正则化和终值数据扰动正则化方法反演了初始温度场,通过数值实验验证了算法的有效性.
中图分类号:
孟庆春,张磊. 一类三维逆时热传导问题的数值求解[J]. 数学物理学报, 2022, 42(1): 187-200.
Qingchun Meng,Lei Zhang. Numerical Solution of the Three-Dimensional Inverse Heat Conduction Problems[J]. Acta mathematica scientia,Series A, 2022, 42(1): 187-200.
表 1
当$ J=10, 20, 30, 40 $时, 正问题数值解与精确解的误差表"
T | J=10 | J=20 | |||||
2 | 0.0972 | 0.0087 | 0.0111 | 0.0961 | 0.0030 | 0.0039 | |
4 | 0.1537 | 0.0137 | 0.0222 | 0.1514 | 0.0048 | 0.0077 | |
6 | 0.1824 | 0.0163 | 0.0335 | 0.1790 | 0.0057 | 0.0116 | |
8 | 0.1923 | 0.0172 | 0.0449 | 0.1881 | 0.0059 | 0.0155 | |
T | J=30 | J=40 | |||||
2 | 0.0961 | 0.0030 | 0.0039 | 0.1435 | 0.0016 | 0.0020 | |
4 | 0.1514 | 0.0048 | 0.0077 | 0.2260 | 0.0025 | 0.0041 | |
6 | 0.1790 | 0.0057 | 0.0116 | 0.2669 | 0.0030 | 0.0061 | |
8 | 0.1881 | 0.0059 | 0.0155 | 0.2803 | 0.0031 | 0.0082 |
表 2
当$ \alpha=0.0001, 0.0005, 0.001, 0.005 $时, 反问题数值解与精确解的误差表"
δ | α = 0.0001 | α = 0.0005 | |||||
0.001 | 0.3704 | 0.0119 | 0.0117 | 0.3165 | 0.0100 | 0.0100 | |
0.005 | 0.4378 | 0.0134 | 0.0138 | 0.3815 | 0.0126 | 0.0121 | |
0.01 | 0.5333 | 0.0198 | 0.0169 | 0.4628 | 0.0156 | 0.0146 | |
0.05 | 1.3499 | 0.0734 | 0.0427 | 1.1337 | 0.0432 | 0.0359 | |
δ | α = 0.001 | α = 0.005 | |||||
0.001 | 0.2490 | 0.0080 | 0.0079 | 0.2778 | 0.0088 | 0.0088 | |
0.005 | 0.3122 | 0.0100 | 0.0099 | 0.2147 | 0.0068 | 0.0068 | |
0.01 | 0.3950 | 0.0122 | 0.0125 | 0.1381 | 0.0048 | 0.0044 | |
0.05 | 1.0394 | 0.0332 | 0.0329 | 0.5074 | 0.0152 | 0.0160 |
表 3
当$ T=4, 6, 8, 10, 20, 30, 40, 50 $, $ \delta=0 $时, 反问题数值解与精确解的误差表"
α | T=4 | T=6 | |||||
0.0001 | 0.2490 | 0.0080 | 0.0079 | 0.2778 | 0.0088 | 0.0088 | |
0.0005 | 0.3122 | 0.0100 | 0.0099 | 0.2147 | 0.0068 | 0.0068 | |
0.001 | 0.3950 | 0.0122 | 0.0125 | 0.1381 | 0.0048 | 0.0044 | |
0.005 | 1.0394 | 0.0332 | 0.0329 | 0.0377 | 0.0011 | 0.0013 | |
α | T=8 | T=10 | |||||
0.0001 | 0.4306 | 0.0141 | 0.0154 | 0.5406 | 0.0201 | 0.0193 | |
0.0005 | 0.3987 | 0.0130 | 0.0142 | 0.4987 | 0.0159 | 0.0178 | |
0.001 | 0.3616 | 0.0117 | 0.0129 | 0.4513 | 0.0142 | 0.0161 | |
0.005 | 0.0686 | 0.0023 | 0.0024 | 0.0789 | 0.0024 | 0.0028 | |
α | T=20 | T=30 | |||||
0.0001 | 1.0701 | 0.0332 | 0.0382 | 1.5610 | 0.0492 | 0.0557 | |
0.0005 | 0.9424 | 0.0297 | 0.0336 | 1.1354 | 0.0359 | 0.0405 | |
0.001 | 0.7844 | 0.0247 | 0.0280 | 0.6202 | 0.0196 | 0.0221 | |
0.005 | 0.4205 | 0.0133 | 0.0150 | 2.9273 | 0.0926 | 0.1044 | |
α | T=40 | T=50 | |||||
0.0001 | 1.8839 | 0.0595 | 0.0672 | 1.6395 | 0.0519 | 0.0585 | |
0.0005 | 0.5125 | 0.0162 | 0.0183 | 2.3469 | 0.0742 | 0.0837 | |
0.001 | 1.0346 | 0.0327 | 0.0369 | 6.0408 | 0.1910 | 0.2154 | |
0.005 | 9.2018 | 0.2910 | 0.3281 | 17.8107 | 0.5632 | 0.6350 |
表 4
当$ T=4, 6, 8, 10, 20, 30, 40, 50 $, $ \delta=0.001 $时, 反问题数值解与精确解的误差表"
α | T=4 | T=6 | |||||
0.0001 | 0.6014 | 0.0454 | 0.0214 | 0.9492 | 0.0748 | 0.0338 | |
0.0005 | 0.2497 | 0.0135 | 0.0089 | 0.3730 | 0.0185 | 0.0133 | |
0.001 | 0.2042 | 0.0101 | 0.0073 | 0.3015 | 0.0144 | 0.0108 | |
0.005 | 0.0210 | 0.0015 | 0.0007 | 0.0585 | 0.0031 | 0.0021 | |
α | T=8 | T=10 | |||||
0.0001 | 1.0726 | 0.0650 | 0.0382 | 1.1132 | 0.0726 | 0.0397 | |
0.0005 | 0.4502 | 0.0205 | 0.0161 | 0.5333 | 0.0230 | 0.0190 | |
0.001 | 0.3932 | 0.0199 | 0.0140 | 0.4762 | 0.0163 | 0.0170 | |
0.005 | 0.0865 | 0.0044 | 0.0031 | 0.0953 | 0.0037 | 0.0034 | |
α | T=20 | T=30 | |||||
0.0001 | 1.1529 | 0.0486 | 0.0411 | 1.5826 | 0.0521 | 0.0564 | |
0.0005 | 0.9618 | 0.0333 | 0.0343 | 1.1500 | 0.0356 | 0.0401 | |
0.001 | 0.7997 | 0.0240 | 0.0285 | 0.6346 | 0.0203 | 0.0226 | |
0.005 | 0.4066 | 0.0131 | 0.0145 | 2.9149 | 0.0922 | 0.1039 | |
α | T=40 | T=50 | |||||
0.0001 | 1.8994 | 0.0617 | 0.0677 | 1.6546 | 0.0525 | 0.0590 | |
0.0005 | 0.5265 | 0.0166 | 0.0188 | 2.3341 | 0.0738 | 0.0832 | |
0.001 | 1.0211 | 0.0325 | 0.0364 | 6.0298 | 0.1907 | 0.2150 | |
0.005 | 9.1925 | 0.2907 | 0.3278 | 17.8057 | 0.5631 | 0.6349 |
1 |
Hazanee A , Ismailov M I , Lesnic D . An inverse time-dependent source problem for the heat equation. Appl Numer Math, 2013, 69: 13- 33
doi: 10.1016/j.apnum.2013.02.004 |
2 | Zhang J L , Sheng T T . Dynamic system method for solving inverse problems in heat conduction equations. J Comput Sci Eng, 2014, 11: 413- 417 |
3 |
Min T , Zang S Q , Chen S N . Source strength identification problem for the three-dimensional inverse heat conduction equations. Inverse Probl Sci Eng, 2020, 28 (6): 827- 838
doi: 10.1080/17415977.2019.1665663 |
4 |
Wagner B M , Fernando M R . A comparison of some inverse methods for estimating the initial condition of the heat equation. J Comput Appl Math, 1999, 103 (1): 145- 163
doi: 10.1016/S0377-0427(98)00249-0 |
5 |
Khalid M , Salim M , Zaman F D . Initial inverse problem in heat equation with Bessel operator. Int J Heat Mass Tran, 2002, 45 (14): 2959- 2965
doi: 10.1016/S0017-9310(02)00019-4 |
6 |
Yang T , Zhen W W , Xie J X . Reversing inverse problem of source term of heat conduction equation. Adv Appl Math, 2019, 8 (1): 105- 110
doi: 10.12677/AAM.2019.81012 |
7 |
Damirchi J , Yazdanian A R , Shamami T R . Numerical investigation of an inverse problem based on regularization method. Math Sci, 2019, 13 (3): 193- 199
doi: 10.1007/s40096-019-0288-2 |
8 |
Tuan N H , Binh T T , Minh N D . An improved regularization method for initial inverse problem in 2-D heat equation. Appl Math Model, 2015, 39 (2): 425- 437
doi: 10.1016/j.apm.2014.05.014 |
9 |
Chen H , Frankel J I , Keyhani M . Nonlinear inverse heat conduction problem of surface temperature estimation by calibration integral equation method. Numer Heat Tr B-Fund, 2018, 73 (5): 263- 291
doi: 10.1080/10407790.2018.1464316 |
10 |
Joachimiak M , Ciaikowski M . Nonlinear unsteady inverse boundary problem for heat conduction equation. Archives of Thermodynamics, 2017, 38 (2): 81- 100
doi: 10.1515/aoter-2017-0011 |
11 | Chapko R , Mindrinos L . On the non-linear integral equation approach for an inverse boundary value problem for the heat equation. J Eng Math, 2019, 119 (2): 255- 268 |
12 | Ma K Y , Prakash P , Deiveegan A . Generalized Tikhonov methods for an inverse source problem of the time-fractional diffusion equation. J Eng Math, 2018, 108: 39- 48 |
13 |
Liu C J , Wei T . Moving boundary identification for a two-dimensional inverse heat conduction problem. Inverse Probl Sci En, 2011, 19 (8): 1139- 1154
doi: 10.1080/17415977.2011.603084 |
14 | Lewis R W , Nithiarasu P , Seetharamu K N . Fundamentals of the Finite Element Method for Heat and Fluid Flow. New York: John Wiley & Sons, 2004: 152- 155 |
15 | 孔祥谦. 有限单元法在传热学中的应用. 北京: 科学出版社, 1998: 29- 31 |
Kong X Q . The Application of the Finite Element Method in Heat Transfer. Beijing: Science Press, 1998: 29- 31 | |
16 |
Bourgeois H M , Kirsch A , Rundell W . Inverse problems for partial differential equations. Oberwolfach Reports, 2012, 9 (1): 611- 659
doi: 10.4171/OWR/2012/11 |
17 | 刘继军. 不适定问题的正则化方法及应用. 北京: 科学出版社, 2005: 132- 156 |
Liu J J . The Regularization Methods and Applications of Ill-posed Problems. Beijing: Science Press, 2005: 132- 156 | |
18 |
Liu J J . Numerical solution of forward and backward problem for 2-D heat conduction equation. J Comput Appl Math, 2002, 145 (2): 459- 482
doi: 10.1016/S0377-0427(01)00595-7 |
19 | Tikhonov A N , Goncharsky A V , Stepanov V V , Yagola A G . Solutions of Ill-posed Problems. Washington, DC: Winston, 1977: 188- 196 |
[1] | 祝鹏, 陈艳萍, 徐先宇. 非均匀网格上时间分数阶扩散—波动方程的 BDF2 型有限元方法[J]. 数学物理学报, 2025, 45(4): 1268-1290. |
[2] | 杨帆, 曹英, 李晓晓. 时空分数阶扩散波动方程的初值识别问题[J]. 数学物理学报, 2023, 43(2): 377-398. |
[3] | 陈兴发, 钟澎洪. 一般幂次散焦导数薛定谔方程解在Hs中的不适定性[J]. 数学物理学报, 2022, 42(6): 1768-1781. |
[4] | 黄媛,支越,康彤,王然,张红. 非线性感应加热问题的全离散有限元方法[J]. 数学物理学报, 2022, 42(4): 1238-1255. |
[5] | 张宏武. 一类半线性椭圆方程柯西问题的正则化方法[J]. 数学物理学报, 2022, 42(1): 45-57. |
[6] | 杨晓侠,张厚超. Extended Fisher-Kolmogorov方程的间断有限元分析[J]. 数学物理学报, 2021, 41(6): 1880-1896. |
[7] | 李婷,黄鹏展. 向列相液晶流的模块grad-div稳定化有限元方法[J]. 数学物理学报, 2021, 41(2): 451-467. |
[8] | 杨帆,王乾朝,李晓晓. 识别Rayleigh-Stokes方程源项的分数阶Landweber迭代正则化方法[J]. 数学物理学报, 2021, 41(2): 427-450. |
[9] | 王克彦,王奇生. 一类非线性双曲型方程扩展混合有限元方法的误差估计[J]. 数学物理学报, 2021, 41(2): 468-478. |
[10] | 李伟,黄鹏展. 流体相互作用模型的粘性分离有限元方法[J]. 数学物理学报, 2020, 40(5): 1362-1380. |
[11] | 王俊俊,杨晓侠. 一类非线性抛物方程H1-Galerkin混合有限元方法的高精度分析[J]. 数学物理学报, 2019, 39(4): 894-908. |
[12] | 葛志昊,葛媛媛. 几乎不可压缩线性弹性问题的多重网格Uzawa型混合有限元方法[J]. 数学物理学报, 2018, 38(5): 873-882. |
[13] | 文娟, 何银年, 黄鹏展, 李敏. Navier-Stokes方程几种稳定化有限元算法数值比较[J]. 数学物理学报, 2016, 36(3): 543-557. |
[14] | 陈传军, 赵鑫. 一类非线性对流扩散方程两重网格特征有限元方法及误差估计[J]. 数学物理学报, 2014, 34(3): 643-654. |
[15] | 杨宇博, 祝鹏, 尹云辉. 奇异摄动问题最优阶一致收敛的间断有限元分析[J]. 数学物理学报, 2014, 34(3): 716-726. |
|