| 1 | Hazanee A , Ismailov M I , Lesnic D . An inverse time-dependent source problem for the heat equation. Appl Numer Math, 2013, 69: 13- 33 | | 2 | Zhang J L , Sheng T T . Dynamic system method for solving inverse problems in heat conduction equations. J Comput Sci Eng, 2014, 11: 413- 417 | | 3 | Min T , Zang S Q , Chen S N . Source strength identification problem for the three-dimensional inverse heat conduction equations. Inverse Probl Sci Eng, 2020, 28 (6): 827- 838 | | 4 | Wagner B M , Fernando M R . A comparison of some inverse methods for estimating the initial condition of the heat equation. J Comput Appl Math, 1999, 103 (1): 145- 163 | | 5 | Khalid M , Salim M , Zaman F D . Initial inverse problem in heat equation with Bessel operator. Int J Heat Mass Tran, 2002, 45 (14): 2959- 2965 | | 6 | Yang T , Zhen W W , Xie J X . Reversing inverse problem of source term of heat conduction equation. Adv Appl Math, 2019, 8 (1): 105- 110 | | 7 | Damirchi J , Yazdanian A R , Shamami T R . Numerical investigation of an inverse problem based on regularization method. Math Sci, 2019, 13 (3): 193- 199 | | 8 | Tuan N H , Binh T T , Minh N D . An improved regularization method for initial inverse problem in 2-D heat equation. Appl Math Model, 2015, 39 (2): 425- 437 | | 9 | Chen H , Frankel J I , Keyhani M . Nonlinear inverse heat conduction problem of surface temperature estimation by calibration integral equation method. Numer Heat Tr B-Fund, 2018, 73 (5): 263- 291 | | 10 | Joachimiak M , Ciaikowski M . Nonlinear unsteady inverse boundary problem for heat conduction equation. Archives of Thermodynamics, 2017, 38 (2): 81- 100 | | 11 | Chapko R , Mindrinos L . On the non-linear integral equation approach for an inverse boundary value problem for the heat equation. J Eng Math, 2019, 119 (2): 255- 268 | | 12 | Ma K Y , Prakash P , Deiveegan A . Generalized Tikhonov methods for an inverse source problem of the time-fractional diffusion equation. J Eng Math, 2018, 108: 39- 48 | | 13 | Liu C J , Wei T . Moving boundary identification for a two-dimensional inverse heat conduction problem. Inverse Probl Sci En, 2011, 19 (8): 1139- 1154 | | 14 | Lewis R W , Nithiarasu P , Seetharamu K N . Fundamentals of the Finite Element Method for Heat and Fluid Flow. New York: John Wiley & Sons, 2004: 152- 155 | | 15 | 孔祥谦. 有限单元法在传热学中的应用. 北京: 科学出版社, 1998: 29- 31 | | 15 | Kong X Q . The Application of the Finite Element Method in Heat Transfer. Beijing: Science Press, 1998: 29- 31 | | 16 | Bourgeois H M , Kirsch A , Rundell W . Inverse problems for partial differential equations. Oberwolfach Reports, 2012, 9 (1): 611- 659 | | 17 | 刘继军. 不适定问题的正则化方法及应用. 北京: 科学出版社, 2005: 132- 156 | | 17 | Liu J J . The Regularization Methods and Applications of Ill-posed Problems. Beijing: Science Press, 2005: 132- 156 | | 18 | Liu J J . Numerical solution of forward and backward problem for 2-D heat conduction equation. J Comput Appl Math, 2002, 145 (2): 459- 482 | | 19 | Tikhonov A N , Goncharsky A V , Stepanov V V , Yagola A G . Solutions of Ill-posed Problems. Washington, DC: Winston, 1977: 188- 196 |
|