数学物理学报 ›› 2022, Vol. 42 ›› Issue (1): 245-268.
收稿日期:
2020-09-26
出版日期:
2022-02-26
发布日期:
2022-02-23
通讯作者:
李楠,蒋涛
E-mail:wangchangyou417@163.com;2972028881@qq.com;jiangtop@126.com
作者简介:
王长有, E-mail: 基金资助:
Changyou Wang1(),Nan Li2,*(
),Tao Jiang3,4,*(
),Qiang Yang1
Received:
2020-09-26
Online:
2022-02-26
Published:
2022-02-23
Contact:
Nan Li,Tao Jiang
E-mail:wangchangyou417@163.com;2972028881@qq.com;jiangtop@126.com
Supported by:
摘要:
该文研究了一类具有时滞和反馈控制的三种群非线性非自治比率依赖的食物链模型.首先,基于时滞微分不等式理论,提出了一些新的分析方法,并构造了一个合适的李亚普诺夫函数.其次,得到了系统正解的持久性和全局吸引性的充分条件.第三,利用理论分析和不动点理论,讨论了相应的周期系统,建立了周期系统正周期解的存在性、唯一性和稳定性的充分条件.另外,给出了一些数值模拟,证明了我们的理论分析是正确的.最后,给出了相应的具有乘法噪声源的随机食物链模型的数值例子,并得到该模型一些新的有趣的解的变化过程.
中图分类号:
王长有,李楠,蒋涛,杨强. 一类具有时滞及反馈控制的非自治非线性比率依赖食物链模型[J]. 数学物理学报, 2022, 42(1): 245-268.
Changyou Wang,Nan Li,Tao Jiang,Qiang Yang. On a Nonlinear Non-Autonomous Ratio-Dependent Food Chain Model with Delays and Feedback Controls[J]. Acta mathematica scientia,Series A, 2022, 42(1): 245-268.
1 |
Arditi R , Ginzburg L R . Coupling in predator-prey dynamics: Ratio-dependence. Journal of Theoretical Biology, 1989, 139 (3): 311- 326
doi: 10.1016/S0022-5193(89)80211-5 |
2 | Basener W. Topology and Its Applications. Hoboken, NJ: John Wiley & Sons, 2006 |
3 |
Celik C . Stability and Hopf Bifurcation in a delayed ratio dependent Holling-Tanner type model. Applied Mathematics and Computation, 2015, 255: 228- 237
doi: 10.1016/j.amc.2014.11.086 |
4 |
Chen F . On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay. Journal of Computational and Applied Mathematics, 2005, 180 (1): 33- 49
doi: 10.1016/j.cam.2004.10.001 |
5 |
Denaro G , Valenti D , La Cognata A , et al. Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics. Ecological Complexity, 2013, 13: 21- 34
doi: 10.1016/j.ecocom.2012.10.002 |
6 |
Ding W , Huang W Z . Global dynamics of a ratio-dependent holling-tanner predator-prey system. Journal of Mathematical Analysis and Applications, 2018, 460 (1): 458- 475
doi: 10.1016/j.jmaa.2017.11.057 |
7 |
Dubkov A A , Spagnolo B . Verhulst model with lévy white noise excitation. The European Physical Journal B, 2008, 65 (3): 361- 367
doi: 10.1140/epjb/e2008-00337-0 |
8 | Falci G, La Cognata A, Berritta M, et al. Design of a lambda system for population transfer in superconducting nanocircuits. Physical Review B, 2013, 87, ID: 214515 |
9 | Feistel R, Ebeling W. Evolution of Complex System. Dordrecht: Kluwer, 1989 |
10 | Freeze M , Chang Y , Feng W . Analysis of dynamics in a complex food chain with ratio-dependent functional response. Journal of Applied Analysis & Computation, 2014, 4 (1): 69- 87 |
11 |
Garay J , Cressman R , Xu F , et al. Optimal forager against ideal free distributed prey. The American Naturalist, 2015, 186 (1): 111- 122
doi: 10.1086/681638 |
12 |
Giuffrida A , Valenti D , Ziino G , et al. A stochastic interspecific competition model to predict the behaviour of Listeria monocytogenes in the fermentation process of a traditional Sicilian salami. European Food Research and Technology, 2009, 228 (5): 767- 775
doi: 10.1007/s00217-008-0988-6 |
13 | Gopalsamy K , Weng P . Global attractivity in a competition system with feedback controls. Computers and Mathematics with Applications, 2003, 45 (4/5): 665- 676 |
14 | Haken H . Advanced Synergetics. Berlin: Springer, 1985 |
15 | Horsthemke W , Lefever R . Noise-Induced Transitions. Theory and Applications in Physics. Chemistry, and Biology. Berlin: Springer, 1984 |
16 | Khalil H K. Nonlinear Systems. Englewood Cliffs: Prentice-Hall, 2002 |
17 | Liang Z Q , Pan H W . Qualitative analysis of a ratio-dependent holling-tanner model. Journal of Mathematical Analysis & Applications, 2007, 334 (2): 954- 964 |
18 |
Liang Z Q , Zeng X P , Pang G P , Liang Y H . Periodic solution of a leslie predator-prey system with ratio-dependent and state impulsive feedback control. Nonlinear Dynamics, 2017, 89 (4): 2941- 2955
doi: 10.1007/s11071-017-3637-4 |
19 | Louartassi Y , Alla A , Hattaf K , Nabil A . Dynamics of a predator-prey model with harvesting and reserve area for prey in the presence of competition and toxicity. Journal of Applied Mathematics and Computing, 2019, 59 (1/2): 305- 321 |
20 |
Lu G , Lu Z , Lian X . Delay effect on the permanence for lotka-volterra cooperative systems. Nonlinear Analysis: Real World Applications, 2010, 11 (4): 2810- 2816
doi: 10.1016/j.nonrwa.2009.10.005 |
21 |
Mikhaylov A N , Gryaznov E G , Belov A L , et al. Field- and irradiation-induced phenomena in memristive nanomaterials. Physica Status Solidi (c), 2016, 13: 870- 881
doi: 10.1002/pssc.201600083 |
22 |
Muhammadhaji A , Teng Z , Rehim M . Dynamical behavior for a class of delayed competitive-mutualism systems. Differential Equations and Dynamical Systems, 2015, 23 (3): 281- 301
doi: 10.1007/s12591-014-0226-6 |
23 |
Nakata Y , Muroya Y . Permanence for nonautonomous Lotka-Volterra cooperative systems with delays. Nonlinear Analysis: Real World Applications, 2010, 11 (1): 528- 534
doi: 10.1016/j.nonrwa.2009.01.002 |
24 | Nicolis G , Prigogine L . Self-Organization in Non-Equilibrium Systems. New Jersey: Wiley, 1977 |
25 | Nie L , Teng Z , Hu L , Peng J G . Permanence and stability in non-autonomous predator-prey Lotka-Volterra systems with feedback controls. Computers & Mathematics with Applications, 2009, 58 (3): 436- 448 |
26 |
Shen C X , You M S . Permanence and extinction of a three-species ratio-dependent food chain model with delay and prey diffusion. Applied Mathematics and Computation, 2010, 217 (5): 1825- 1830
doi: 10.1016/j.amc.2010.02.037 |
27 | Spagnolo B , La Barbera A . Role of the noise on the transient dynamics of an ecosystem of interacting species. Physica A: Statistical Mechanics and its Applications, 2002, 315 (1/2): 114- 124 |
28 | Spagnolo B , Dubkov A A , Pankratov A L , et al. Lifetime of metastable states and suppression of noise in interdisciplinary physical models. Acta Physica Polonica B, 2007, 38 (5): 1925- 1950 |
29 |
Spagnolo B , Valenti D . Volatility effects on the escape time in financial market models. International Journal of Bifurcation and Chaos, 2008, 18 (9): 2775- 2786
doi: 10.1142/S0218127408022007 |
30 | Valenti D , Schimansky-Geier L , Sailer X , Spagnolo B . Moment equations for a spatially extended system of two competing species. The European Physical Journal B, 2006, 50 (1/2): 199- 203 |
31 | Wang C Y , Li N , Zhou Y , Pu X , Li R . On a multi-delay lotka-volterra predator-prey model with feedback controls and prey diffusion. Acta Mathematica Scientia, 2019, 39B (2): 429- 448 |
32 | Wang C Y, Zhou Y Q, Li Y H, Li R. Well-posedness of a ratio-dependent lotka-volterra system with feedback control. Boundary Value Problems, 2018, 2018, ID: 117 |
33 |
Xu F , Cressman R , Křivan V . Evolution of mobility in predator-prey systems. Discrete and Continuous Dynamical Systems-Series B, 2014, 19 (10): 3397- 3432
doi: 10.3934/dcdsb.2014.19.3397 |
34 | Xu J, Chen F. Permanence of a Lotka-Volterra cooperative system with time delays and feedback controls. Communications in Mathematical Biology & Neuroscience, 2015, 2015, ID: 18 |
35 | Xu R , Chaplain M . Persistence and global stability in a delayed predator-prey system with michaelis-menten type functional response. Applied Mathematics and Computation, 2002, 130 (1): 441- 455 |
36 |
Xu R , Chen L S . Ersistence and global stability for a delayed nonautonomous predator-prey system without dominating instantaneous negative feedback. Journal of Mathematical Analysis and Applications, 2001, 262 (1): 50- 61
doi: 10.1006/jmaa.2001.7524 |
37 |
Zhou J , Mu C . Coexistence of a diffusive predator-prey model with holling type-Ⅱ functional response and density dependent mortality. Journal of Mathematical Analysis and Applications, 2012, 385 (2): 913- 927
doi: 10.1016/j.jmaa.2011.07.027 |
38 | Zhang Q M, Zhang X J, Yang H F. Global dissipativity of stochastic Lotka-Volterra system with feedback controls. International Journal of Biomathematics, 2017, 10(2), ID: 1750022 |
[1] | 倪思妍, 邹天芳, 赵才地. 格点时滞反应扩散方程的拉回吸引子与不变测度[J]. 数学物理学报, 2025, 45(4): 1128-1143. |
[2] | 曾夏萍, 卢文雯, 庞国萍, 梁志清. 具有季节性切换反应及脉冲扰动的鱼类单种群动力学模型[J]. 数学物理学报, 2025, 45(4): 1206-1216. |
[3] | 任红越, 周立群. 一类比例时滞随机神经网络的均方指数同步及应用[J]. 数学物理学报, 2025, 45(3): 888-901. |
[4] | 杨咏丽, 杨赟瑞. 非局部扩散的时空时滞霍乱传染病系统的行波解[J]. 数学物理学报, 2025, 45(1): 110-135. |
[5] | 任琛琛, 杨苏丹. 带有渐近概周期系数的次线性热方程解的存在唯一性[J]. 数学物理学报, 2025, 45(1): 31-43. |
[6] | 刘佳, 包雄雄. 非局部时滞扩散方程棱锥形波前解的渐近稳定性[J]. 数学物理学报, 2025, 45(1): 44-53. |
[7] | 娄瑜, 张翼. 推广的导数非线性薛定谔方程的单/双周期背景上的呼吸子和怪波及其碰撞解[J]. 数学物理学报, 2024, 44(6): 1511-1519. |
[8] | 唐俊, 吴爱龙. 一类随机时滞非线性系统的事件触发控制[J]. 数学物理学报, 2024, 44(6): 1607-1616. |
[9] | 钱玉婷, 周学良, 程志波. 一类奇性 |
[10] | 樊天娇, 冯立超, 杨艳梅. 不等式的推广以及在加性时变时滞系统中的应用[J]. 数学物理学报, 2024, 44(5): 1335-1351. |
[11] | 汪秋分, 张树文. 具有恐惧效应和 Holling III 功能性反应的随机捕食-食饵系统[J]. 数学物理学报, 2024, 44(5): 1380-1391. |
[12] | 钱玉婷, 周学良, 程志波. 一类奇性 |
[13] | 高彩霞, 赵东霞. 带干扰项的 ARZ 交通流模型的时滞控制与 ISS 稳定性[J]. 数学物理学报, 2024, 44(4): 960-977. |
[14] | 尹瑞霞, 王泽东, 张龙. 具有无穷分布时滞和反馈控制的周期阶段结构单种群模型[J]. 数学物理学报, 2024, 44(4): 994-1011. |
[15] | 李耀红, 田守富. 一类 mCH-CH 方程的持久性和传播速度[J]. 数学物理学报, 2024, 44(3): 609-620. |
|