| 1 | Oppezzi P , Rossi A M . A convergence for vector valued functions. Optimization, 2007, 57 (3): 435- 448 | | 2 | 李萌, 余国林. 不确定凸优化问题鲁棒近似解的最优性. 数学物理学报, 2020, 40 (4): 1007- 1017 | | 2 | Li M , Yu G L . Optimality of robust approximation solutions for uncertain convex optimization problems. Acta Math Sci, 2020, 40 (4): 1007- 1017 | | 3 | 杨新民. Benson真有效解与Borwein真有效解的等价性. 应用数学, 1994, 7 (2): 246- 247 | | 3 | Yang X M . Equivalence between Benson proper efficient solution and Borwein proper efficient solution. Math Appl, 1994, 7 (2): 246- 247 | | 4 | 周志昂. 集值优化问题Borwein真有效解与Benson真有效解的等价性. 数学的实践与认识, 2012, 42 (1): 247- 250 | | 4 | Zhou Z A . The equivalence of Borwein properly efficient solution and Benson properly efficient solution of set-valued optimization problem. Math Practice Theory, 2012, 42 (1): 247- 250 | | 5 | 刘三阳, 盛宝怀. 非凸向量集值优化Benson真有效解的最优性条件与对偶. 应用数学学报, 2003, 26 (2): 337- 344 | | 5 | Liu S Y , Sheng B H . The optimality conditions and duality of nonconvex vector set-valued optimization with Benson proper efficiency. Acta Math Appl Sin, 2003, 26 (2): 337- 344 | | 6 | 盛宝怀, 刘三阳. Benson真有效意义下集值优化的广义最优性条件. 数学学报, 2003, 28 (3): 611- 620 | | 6 | Sheng B H , Liu S Y . Generalized optimality conditions for set-valued optimization of Benson proper efficient. Acta Math Sin, 2003, 28 (3): 611- 620 | | 7 | 盛宝怀, 刘三阳. 多目标主从向量集值优化Benson真有效解的连通性. 西安电子科技大学学报, 2001, 28 (1): 79- 82 | | 7 | Sheng B H , Liu S Y . Connectivity of Benson proper efficient solution for multi-objective master-slave vector set-valued optimization. Journal of Xidian University, 2001, 28 (1): 79- 82 | | 8 | 袁春红. 集值映射多目标半定规划问题Benson真有效解集的连通性. 内蒙古师范大学学报(自然科学汉文版), 2016, 45 (1): 9- 12 | | 8 | Yuan C H . Connectedness of Benson proper efficient solution set of multiobjective semidefinite programming problems with set-valued maps. Journal of Inner Mongolia Normal University(Natural Science Edition), 2016, 45 (1): 9- 12 | | 9 | 徐义红, 杨赟. 集值优化Benson真有效元的二阶刻画. 运筹学学报, 2016, 20 (2): 88- 96 | | 9 | Xu Y H , Yang Y . Second-order characterizations on Benson proper efficient element of set-valued optimization. Operations Research Transactions, 2016, 20 (2): 88- 96 | | 10 | 徐义红, 熊卫芝, 汪涛. 集值优化问题的Benson次梯度及其应用. 南昌大学学报(理科版), 2010, 34 (4): 326- 331 | | 10 | Xu Y H , Xiong W Z , Wang T . Benson-subgradient of set-valued optimization and its applications. Journal of Nanchang University(Natural Science), 2010, 34 (4): 326- 331 | | 11 | Gutiérrez C , Jiménez B , Novo V . On approximate solutions in vector optimization problems via scalarization. Comput Optim Appl, 2006, 35: 305- 324 | | 12 | Sawaragi Y , Nakayama H , Tanino T . Theory of Multiobjective Optimization. Orlando: Academic Press, 1985 | | 13 | Ansari Q H, K?bis E, Yao J C. Vector Variational Inequalities and Vector Optimization: Theory and Applications. Switzerland: Springer Cham, 2018 | | 14 | Huang X X . Stability in vector-valued and set-valued optimization. Math Methods Oper Res, 2000, 52: 185- 193 | | 15 | Chen G Y, Huang X X, Yang X Q. Vector Optimization: Set-valued and Variational Analysis. Berlin: Springer-Verlag, 2005 | | 16 | Dontchev A L, Zolezzi T. Well-Posed Optimization Problems. Berlin: Springer-Verlag, 1993 | | 17 | Zeng J , Li S J , Zhang W Y . Stability results for convex vector-valued optimization problems. Positivity, 2011, 15: 441- 453 | | 18 | Lucchetti R E , Miglierina E . Stability for convex vector optimization problems. Optimization, 2004, 53 (5/6): 517- 528 | | 19 | G?pfert A, Riahi H, Tammer C, Zǎlinescu C. Variational Methods in Partially Ordered Spaces. New York: Springer-Verlag, 2003 | | 20 | Bertsekas D P, Nedi? A, Ozdaglar A E. Convex Analysis and Optimization. Belmont Massachusetts: Athena Scientific, 2006 | | 21 | Rockafellar R T, Wets R J. Variational Analysis. Berlin: Springer-Verlag, 2004 |
|