| 1 | 余国林, 刘三阳. 集值映射的Henig有效次微分及其稳定性. 数学物理学报, 2008, 28A (3): 48- 56 |
| 1 | Yu G L , Liu S Y . The Henig eficient subdiferential of set-valued mapping and stability. Acta Mathematica Scientia, 2008, 28A (3): 48- 56 |
| 2 | Su T V , Hien N D . Studniarski's derivatives and efficiency conditions for constrained vector equilibrium problems with applications. Optimization, 2021, 70 (1): 121- 148 |
| 3 | Su V T . New optimality conditions for unconstrained vector equilibrium problem in terms of contingent derivatives in Banach spaces. 4OR-A Quarterly Journal of Operations Research, 2018, 16 (2): 173- 198 |
| 4 | Luu D V , Mai T T . On optimality conditions for Henig efficiency and superefficiency in vector equilibrium problems. Numerical Functional Analysis and Optimization, 2018, 10 (2): 1- 22 |
| 5 | 龙宪军. Asplund空间中非凸向量均衡问题近似解的最优性条件. 数学物理学报, 2014, 34A (3): 593- 602 |
| 5 | Long X Y . Optim ality conditions for approxim ate solutions on nonconvex vector equilibrium problem s in Asplund spaces. Acta Mathematica Scientia, 2014, 34A (3): 593- 602 |
| 6 | Phan Nhat Tinh . Optimality conditions for nonsmooth vector problems in normed spaces. Optimization, 2020, 69 (6): 1151- 1186 |
| 7 | 韩文艳, 余国林. 非光滑向量均衡问题近似拟全局真有效解的最优性条件. 应用数学学报, 2021, 44 (1): 49- 60 |
| 7 | Han W Y , Yu G L . Optimality conditions for approximate quasi globally proper efficient solutions to nonsmooth vector equilibrium problems. Acta Mathematica Applicatae Sinica, 2021, 44 (1): 49- 60 |
| 8 | Zhang Y M , Yu G L , Han W Y , et al. Optimality conditions and scalarization of approximate quasi weak efficient solutions for vector equilibrium problem. Complexity, 2020, 2020 (1): 1- 7 |
| 9 | Ioffe A D . Approximate subdifferentials and applications Ⅱ. Mathematika, 1986, 33 (1): 111- 128 |
| 10 | Feng Y , Qiu Q . Optimality conditions for vector equilibrium problems with constraint in Banach spaces. Optimization Letters, 2014, 8 (6): 1931- 1944 |
| 11 | Luu D , Hang D . Efficient solutions and optimality conditions for vector equilibrium problems. Mathematical Methods of Operations Research, 2014, 79 (2): 163- 177 |
| 12 | 余国林, 刘万里. 生成锥内部凸-锥-类凸集值优化问题的Henig真有效性. 数学物理学报, 2009, 29A (3): 800- 809 |
| 12 | Yu G L , Liu W L . Henig proper eficiency in the ic-conen-convexlike set-valued optimization problems. Acta Mathematica Scientia, 2009, 29A (3): 800- 809 |
| 13 | Li S J , Zhao P . A method of duality for a mixed vector equilibrium problem. Optimization Letters, 2010, 4 (1): 85- 96 |
| 14 | Fu H Y , Dan B , Liu X Y . Existence and duality of generalized ε-vector equilibrium problems. Journal of Applied Mathematics, 2012, 2012 (6): 1- 13 |
| 15 | Anh N L H . Duality for vector equilibrium problems with constraints. Bulletin of the Iranian Mathematical Society, 2017, 43 (6): 1679- 1694 |
| 16 | Khanh P Q , Tung N M . Optimality conditions and duality for nonsmooth vector equilibrium problems with constraints. Optimization, 2015, 64 (7): 1547- 1575 |
| 17 | Chen J , Elisabeth K?bis , Yao J C . Optimality conditions and duality for robust nonsmooth multiobjective optimization problems with constraints. Journal of Optimization Theory and Applications, 2018, 181: 411- 436 |
| 18 | Clarke F H. Optimization and Nonsmooth Analysis. New York: John Wiley and Sons, 1983 |
| 19 | Jourani A , Thibault L . Approximate subdifferential of composite functions. Bulletin of the Australian Mathematical Society, 1993, 47 (3): 443- 455 |
| 20 | Gerth C , Weidner P . Nonconvex separation theorems and some applications in vector optimization. Journal of Optimization Theory and Applications, 1990, 67 (2): 297- 320 |