| 1 | Fuglede B . Commuting self-adjoint partial differential operators and a group theoretic problem. J Funct Anal, 1974, 16 (1): 101- 121 | | 2 | Jorgensen P E T , Pedersen S . Dense analytic subspaces in fractal L2 spaces. J Anal Math, 1998, 75 (1): 185- 228 | | 3 | Laba I , Wang Y . On spectral Cantor measures. J Funct Anal, 2002, 193 (2): 409- 420 | | 4 | Dutkay D E , Jorgensen P E T . Iterated function systems, Ruelle operators, and invariant projective measures. Math Comp, 2006, 75 (256): 1931- 1970 | | 5 | Dutkay D E , Jorgensen P E T . Fourier frequencies in affine iterated function systems. J Funct Anal, 2007, 247 (1): 110- 137 | | 6 | Dutkay D E , Han D G , Sun Q Y . On the spectra of a Cantor measure. Adv Math, 2009, 221 (1): 251- 276 | | 7 | Jorgensen P E T , Kornelson K , Shuman K . Families of spectral sets for Bernoulli convolutions. J Fourier Anal Appl, 2011, 17 (3): 431- 456 | | 8 | Li J L . Spectra of a class of self-affine measures. J Funct Anal, 2011, 260 (4): 1086- 1095 | | 9 | Dai X R , He X G , Lai C K . Spectral property of Cantor measures with consecutive digits. Adv Math, 2013, 242 (1): 187- 208 | | 10 | An L X , He X G , Li H X . Spectrality of infinite Bernoulli convolutions. J Funct Anal, 2015, 269 (5): 1571- 1590 | | 11 | Dai X R . Spectra of Cantor measures. Math Ann, 2016, 366 (3): 1621- 1647 | | 12 | Fu Y S , Wen Z X . Spectrality of infinite convolutions with three-element digit sets. Monatsh Math, 2017, 183 (3): 465- 485 | | 13 | He X G , Tang M W , Wu Z Y . Spectral structure and spectral eigienvalve problems of a class of self-similar spectral measures. J Funct Anal, 2019, 277 (10): 3688- 3722 | | 14 | 李红光, 张鹏飞. $\mathbb{R}^n$中一类具有N元数字集的自仿测度的谱性. 数学物理学报, 2020, 40A (3): 667- 675 | | 14 | Li H G , Zhang P F . Spectral property of some self-affine measures with N-element digits on $\mathbb{R}^n$. Acta Math Sci, 2020, 40A (3): 667- 675 | | 15 | Dutkay D E , Haussermann J . Number theory problems from the harmonic analysis of a fractal. J Num Theo, 2016, 159 (1): 7- 26 | | 16 | Dutkay D E , Kraus I . Scaling of spectra of Cantor-type measures and some number theoretic considerations. Analysis Math, 2018, 44 (3): 335- 367 | | 17 | Li J L , Xing D . Multiple spectra of Bernoulli convolutions. Proc Edinb Mathe Soc, 2016, 60 (1): 187- 202 | | 18 | Wu Z Y , Zhu M . Scaling of spectra of self-similar measures with consecutive digits. J Math Anal Appl, 2018, 459 (1): 307- 319 | | 19 | Wang Z M , Dong X H , Ai W H . Scaling of spectra of a class of self-similar measures on R. Mathematische Nachrichten, 2019, 292 (3): 2300- 2307 | | 20 | Hutchinson J E . Fractals and self-similarity. Indiana Univ Math J, 1981, 30 (5): 713- 747 | | 21 | Falconer K J. Fractal Geometry, Mathematical Foundations and Applications. New York: Wiley, 1990 | | 22 | Strichartz R S . Mock Fourier series and transforms associated with certain Cantor measures. J Anal Math, 2000, 81 (1): 209- 238 |
|