| 1 | Dewsbury D A . Dominance rank, copulatory behavior, and differential reproduction. The Quarterly Review of Biology, 1982, 57 (2): 135- 159 | | 2 | Henson S M , Cushing J M . Hierarchical models of intra-specific competition: scramble versus contest. J Math Biol, 1996, 34 (7): 755- 772 | | 3 | Jang R J , Cushing J M . A discrete hierarchical model of intra-specific competition. J Math Anal Appl, 2003, 280 (1): 102- 122 | | 4 | Gurney W S C , Nisbet R M . Ecological stability and social hierarchy. Theoretical Population Biology, 1979, 16, 48- 80 | | 5 | Cushing J M . A size-structured model for cannibalism. Theoretical Population Biology, 1992, 42, 347- 361 | | 6 | Cushing J M . The dynamics of hierarchical age-structured populations. J Math Biol, 1994, 32, 705- 729 | | 7 | Cushing J M , Li J . Oscilations caused by cannibalism in a size-structured population model. Canadian Applied Mathematics Quarterly, 1995, 3 (2): 155- 172 | | 8 | Calsina á , Salda$\ddot{\rm n}$a J . Asymptotic behavior of a model of hierarchically structured population dynamics. J Math Biol, 1997, 35, 967- 987 | | 9 | Kraev E A . Existence and uniqueness for height structured hierarchical population models. Natural Resources Modeling, 2001, 14 (1): 45- 70 | | 10 | Ackleh A S , Deng K . Monotone approximation for a hierarchical age-structured population model. Dynamics of Continuous, Discrete and Impulsive Systems, 2005, 12, 203- 214 | | 11 | Ackleh A S , Deng K , Thibodeaux J J . A monotone approximation for a size-structured population model with a generalized environment. Journal of Biological Dynamics, 2007, 1 (4): 305- 319 | | 12 | Ackleh A S , Deng K , Hu S . A quasilinear hierarchical size-structured model: well-posedness and application. Appl Math Optim, 2005, 51, 35- 59 | | 13 | Shen J , Shu C W , Zhang M . A high order WENO scheme for a hierarchical size-structured population model. J Sci Comput, 2007, 33, 279- 291 | | 14 | Farkas J Z , Hinow P . Steady states in hierarchical structured populations with distributed states at birth. Discrete and Continuous Dynamical Systems, 2012, 17 (8): 2671- 2689 | | 15 | Liu Y , He Z . On the well-posedness of a nonlinear hierachical size-structured population model. The ANZIAM Journal, 2017, 58 (3/4): 482- 490 | | 16 | He Z , Ni D , Liu Y . Theory and approximation of solutions to a harvested hierarchical age-structured population model. Journal of Applied Analysis and Computation, 2018, 8 (5): 1326- 1341 | | 17 | 何泽荣, 张智强, 裘哲勇. 一类非线性年龄等级结构种群模型的数值解法. 数学物理学报, 2020, 40A (2): 515- 526 | | 17 | He Z , Zhang Z , Qiu Z . Numerical method of a nonlinear hierarchical age-structured population model. Acta Mathematica Scientia, 2020, 40A (2): 515- 526 | | 18 | 何泽荣, 倪冬冬, 王淑平. 一类等级结构种群系统的调控问题. 系统科学与数学, 2018, 38 (10): 1140- 1148 | | 18 | He Z , Ni D , Wang S . Control problem for a class of hierarchical population system. Journal of Systems Science and Mathematical Sciences, 2018, 38 (10): 1140- 1148 | | 19 | He Z , Ni D , Wang S . Optimal harvesting of a hierarchical age-structured population system. International Journal of Biomathematics, 2019, 12 (8): 1950091 | | 20 | He Z , Zhou N . Controllability and stabilization of a nonlinear hierarchical age-structured competing system. Electronic Journal of Differential Equations, 2020, 2020 (58): 1- 16 | | 21 | Barbu V . Mathematical Methods in Optimization of Differential Systems. Boston: Kluwer Academic Publishers, 1994 | | 22 | McDonald J N , Weiss N A . A Course in Real Analysis. Singapore: Elsevier, 2004 | | 23 | Barbu V , Iannelli M . Optimal control of population dynamics. J Optim Theo Appl, 102, 1- 14 | | 24 | Ani?a S . Analysis and Control of Age-Dependent Population Dynamics. Dordrecht: Kluwer Academic Publishers, 2000 |
|