数学物理学报 ›› 2022, Vol. 42 ›› Issue (4): 1209-1226.
收稿日期:
2021-01-27
出版日期:
2022-08-26
发布日期:
2022-08-08
通讯作者:
赵洪涌
E-mail:kwang@nuaa.edu.cn;hyzho1967@126.com
作者简介:
王凯, E-mail: 基金资助:
Received:
2021-01-27
Online:
2022-08-26
Published:
2022-08-08
Contact:
Hongyong Zhao
E-mail:kwang@nuaa.edu.cn;hyzho1967@126.com
Supported by:
摘要:
该文研究了一类时滞反应扩散登革热传染病模型行波解的存在性与不存在性. 首先, 利用辅助系统并结合Schauder不动点定理, 证明了当基本再生数
中图分类号:
王凯,赵洪涌. 一类具有时滞的反应扩散登革热传染病模型的行波解[J]. 数学物理学报, 2022, 42(4): 1209-1226.
Kai Wang,Hongyong Zhao. Traveling Wave of a Reaction-Diffusion Dengue Epidemic Model with Time Delays[J]. Acta mathematica scientia,Series A, 2022, 42(4): 1209-1226.
1 |
Bhatt S , Gething P W , Brady O J , et al. The global distribution and burden of dengue. Nature, 2013, 496: 504- 507
doi: 10.1038/nature12060 |
2 |
Brady O J , Gething P W , Bhatt S , et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Neglected Tropical Disease, 2012, 6: e1760
doi: 10.1371/journal.pntd.0001760 |
3 |
Zhang L , Wang S M . A time-periodic and reaction-diffusion Dengue fever model with extrinsic incubation period and crowding effects. Nonlinear Anal RWA, 2020, 51: 102988
doi: 10.1016/j.nonrwa.2019.102988 |
4 | Becker N, Petric D, Zgomba M, et al. Mosquitoes and Their Control (Second Edition). New York: Springer-Verlag, 2010 |
5 |
Esteva L , Vargas C . Analysis of a dengue disease transmission model. Math Biosci, 1998, 150: 131- 151
doi: 10.1016/S0025-5564(98)10003-2 |
6 |
Lou Y , Zhao X-Q . A reaction-diffusion malaria model with incubation period in the vector population. J Math Boil, 2011, 62: 543- 568
doi: 10.1007/s00285-010-0346-8 |
7 |
Wang J L , Chen Y M . Threshold dynamics of a vector-borne disease model with spatial structure and vector-bias. Appl Math Lett, 2020, 100: 106052
doi: 10.1016/j.aml.2019.106052 |
8 |
Wang W , Zhao X-Q . A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J Appl Math, 2011, 71: 147- 168
doi: 10.1137/090775890 |
9 |
Wu R , Zhao X-Q . A reaction-diffusion model of vector-borne disease with periodic delays. J Nonlinear Sci, 2019, 29: 29- 64
doi: 10.1007/s00332-018-9475-9 |
10 | Ruan S. Spatial-Temporal Dynamics in Nonlocal Epidemiological Models, in: Mathematics for Life Science and Medicine. Berlin: Springer, 2007: 97–122 |
11 |
Berestycki H , Hamel F . Front propagation in periodic excitable media. Commun Pure Appl Math, 2002, 55: 949- 1032
doi: 10.1002/cpa.3022 |
12 |
Ducrot A , Magal P , Ruan S . Travelling wave solutions in mltigroup age-structured epidemic models. Arch Rational Mech Anal, 2010, 195: 311- 331
doi: 10.1007/s00205-008-0203-8 |
13 | Huang W Z . A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems. J Differential Equations, 2017, 260: 2190- 2224 |
14 |
邓栋, 李燕. 一类带治疗项的非局部扩散SIR传染病模型的行波解. 数学物理学报, 2020, 40A (1): 72- 102
doi: 10.3969/j.issn.1003-3998.2020.01.008 |
Deng D , Li Y . Traveling waves in a nonlocal dispersal SIR epidemic model with treatment. Acta Math Sci, 2020, 40A (1): 72- 102
doi: 10.3969/j.issn.1003-3998.2020.01.008 |
|
15 |
Wang Z-C , Li W-T , Ruan S . Travelling wave fronts in reaction- diffusion systems with spatio-temporal delays. J Differential Equations, 2006, 222: 185- 232
doi: 10.1016/j.jde.2005.08.010 |
16 |
Zhang T . Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations. J Differential Equations, 2017, 262: 4724- 4770
doi: 10.1016/j.jde.2016.12.017 |
17 |
Zhang T , Wang W , Wang K . Minimal wave speed for a class of non-cooperative diffusion-reaction system. J Differential Equations, 2016, 260: 2763- 2791
doi: 10.1016/j.jde.2015.10.017 |
18 |
Zhao L , Wang Z-C , Ruan S . Traveling wave solutions in a two-group epidemic model with latent period. Nonlinearity, 2017, 30: 1287- 1325
doi: 10.1088/1361-6544/aa59ae |
19 |
邹霞, 吴事良. 一类具有非线性发生率与时滞的非局部SIR模型的行波解. 数学物理学报, 2018, 38A (3): 496- 513
doi: 10.3969/j.issn.1003-3998.2018.03.008 |
Zou X , Wu S L . Traveling waves in a nonlocal dispersal SIR epidemic model with delay and nonlinear incidence. Acta Math Sci, 2018, 38A (3): 496- 513
doi: 10.3969/j.issn.1003-3998.2018.03.008 |
|
20 | Zhao L , Zhang L , Huo H . Traveling wave solutions of a diffusive SEIR epidemic model with nonlinear incidence rate. Taiwanese J Math, 2019, 23: 951- 980 |
21 |
Wang W , Zhao X-Q . Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J Appl Dyn Syst, 2012, 11: 1652- 1673
doi: 10.1137/120872942 |
22 |
Zhao X-Q . Basic reproduction ratios for periodic compartmental models with time delay. J Dyn Differ Equ, 2017, 29: 67- 82
doi: 10.1007/s10884-015-9425-2 |
23 |
van den Driessche P , Watmough J . Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180: 29- 48
doi: 10.1016/S0025-5564(02)00108-6 |
24 |
Hsu C-H , Yang T-S . Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models. Nonlinearity, 2013, 26: 121- 139
doi: 10.1088/0951-7715/26/1/121 |
25 |
Tian B , Yuan R . Traveling waves for a diffusive SEIR epidemic model with non-local reaction. Appl Math Model, 2017, 50: 432- 449
doi: 10.1016/j.apm.2017.05.040 |
26 |
Ma S W . Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J Differential Equations, 2001, 171: 294- 314
doi: 10.1006/jdeq.2000.3846 |
27 | Zeidler E. Nonlinear Functional Analysis and its Applications I. New York: Springer, 1986 |
28 |
Denu D , Ngoma S , Salako R B . Existence of traveling wave solutions of a deterministic vector-host epidemic model with direct transmission. J Math Anal Appl, 2020, 487: 123995
doi: 10.1016/j.jmaa.2020.123995 |
29 | Wang Z-C , Wu J-H . Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission. Proc R Soc Lond Ser A Math Phys Eng Sci, 2010, 466: 237- 261 |
[1] | 倪思妍, 邹天芳, 赵才地. 格点时滞反应扩散方程的拉回吸引子与不变测度[J]. 数学物理学报, 2025, 45(4): 1128-1143. |
[2] | 武文斌, 任雪, 张冉. 具有时滞的离散扩散疫苗接种模型的行波解[J]. 数学物理学报, 2025, 45(3): 858-874. |
[3] | 任红越, 周立群. 一类比例时滞随机神经网络的均方指数同步及应用[J]. 数学物理学报, 2025, 45(3): 888-901. |
[4] | 吴鹏, 张帅, 方诚. 一类具有非局部扩散和空间异质性年龄-空间结构松材线虫病模型动力学分析[J]. 数学物理学报, 2025, 45(3): 946-959. |
[5] | 杨咏丽, 杨赟瑞. 非局部扩散的时空时滞霍乱传染病系统的行波解[J]. 数学物理学报, 2025, 45(1): 110-135. |
[6] | 吴鹏, 方诚. 具有非局部扩散和空间异质性的年龄-空间结构HIV潜伏感染模型的动力学分析[J]. 数学物理学报, 2025, 45(1): 279-294. |
[7] | 刘佳, 包雄雄. 非局部时滞扩散方程棱锥形波前解的渐近稳定性[J]. 数学物理学报, 2025, 45(1): 44-53. |
[8] | 唐俊, 吴爱龙. 一类随机时滞非线性系统的事件触发控制[J]. 数学物理学报, 2024, 44(6): 1607-1616. |
[9] | 樊天娇, 冯立超, 杨艳梅. 不等式的推广以及在加性时变时滞系统中的应用[J]. 数学物理学报, 2024, 44(5): 1335-1351. |
[10] | 吴鹏, 方诚. 具有异质空间扩散的梅毒模型的阈值动力学分析与仿真[J]. 数学物理学报, 2024, 44(5): 1352-1367. |
[11] | 高彩霞, 赵东霞. 带干扰项的 ARZ 交通流模型的时滞控制与 ISS 稳定性[J]. 数学物理学报, 2024, 44(4): 960-977. |
[12] | 尹瑞霞, 王泽东, 张龙. 具有无穷分布时滞和反馈控制的周期阶段结构单种群模型[J]. 数学物理学报, 2024, 44(4): 994-1011. |
[13] | 徐瑞, 周凯娟, 白宁. 一类基于游离病毒感染和细胞-细胞传播的宿主体内 HIV-1 感染动力学模型[J]. 数学物理学报, 2024, 44(3): 771-782. |
[14] | 郑兰玲, 丁惠生. Banach 空间上一类非稠定时滞微分方程的概自守性[J]. 数学物理学报, 2024, 44(2): 361-375. |
[15] | 白晋彦, 柴树根. 带有时滞边界反馈的退化波动方程的镇定[J]. 数学物理学报, 2024, 44(1): 133-139. |
|