数学物理学报 ›› 2022, Vol. 42 ›› Issue (5): 1517-1536.
收稿日期:
2021-12-06
出版日期:
2022-10-26
发布日期:
2022-09-30
通讯作者:
彭建文
E-mail:1318286263@qq.com;jwpeng6@aliyun.com
作者简介:
刘丽平, E-mail: 基金资助:
Received:
2021-12-06
Online:
2022-10-26
Published:
2022-09-30
Contact:
Jianwen Peng
E-mail:1318286263@qq.com;jwpeng6@aliyun.com
Supported by:
摘要:
该文在实Hilbert空间中引入了一类新的求解变分不等式问题的惯性次梯度外梯度算法. 在适当的参数假设下, 证明了由该算法所产生的序列强收敛于伪单调变分不等式问题的解集与拟非扩张映射不动点集合的公共元素. 最后, 给出了数值实验来说明所提算法的有效性. 该文所得的结果推广和改进了文献中的一些已有结果.
中图分类号:
刘丽平,彭建文. 求解变分不等式和不动点问题的公共元的修正次梯度外梯度算法[J]. 数学物理学报, 2022, 42(5): 1517-1536.
Liping Liu,Jianwen Peng. Modified Subgradient Extragradient Algorithms for Solving Common Elements of Variational Inequality and Fixed Point Problems[J]. Acta mathematica scientia,Series A, 2022, 42(5): 1517-1536.
1 | Aubin J P , Ekeland I . Applied Nonlinear Analysis. New York: Wiley, 1984 |
2 |
Karamardian S . Complementarity problems over cones with monotone and pseudomonotone maps. J Optim Theory Appl, 1976, 18, 445- 454
doi: 10.1007/BF00932654 |
3 | Kinderlehrer D , Stampacchia G . An Introduction to Variational Inequalities and Their Applications. New York: Academic Press, 1980 |
4 | Baiocchi C , Capelo A . Variational and Quasivariational Inequalities Applications to Free Boundary Problems. New York: Wiley, 1984 |
5 | Konnov I V . Combined Relaxation Methods for Variational Inequalities. Berlin: Springer, 2001 |
6 | Sibony M . Methodes iteratives pour les equations et inequations aux derivees partielles non lineares de type monotone. Calcolo, 1970, 7 (1): 65- 183 |
7 | Korpelevich G M . The extragradient method for finding saddle points and other problems. Matecon, 1976, 12, 747- 756 |
8 |
Cai G , Bu S Q . Modified extragradient methods for variational inequality problems and fixed point problems for an infinite family of nonexpansive mappings in Banach spaces. J Global Optim, 2013, 55 (2): 437- 457
doi: 10.1007/s10898-012-9883-6 |
9 |
Cai G , Gibali A , Iyiola O S , Shehu Y . A new double-projection method for solving variational inequalities in Banach spaces. J Optim Theory Appl, 2018, 178, 219- 239
doi: 10.1007/s10957-018-1228-2 |
10 |
Iusem A N , Nasri M . Korpelevich's method for variational inequality problems in Banach spaces. J Global Optim, 2011, 50, 59- 76
doi: 10.1007/s10898-010-9613-x |
11 |
Yao Y H , Noor M A , Noor K I , Liou Y C , Yaqoob H . Modified extragradient methods for a system of variational inequalities in Banach spaces. Acta Appl Math, 2010, 110, 1211- 1224
doi: 10.1007/s10440-009-9502-9 |
12 | Shehu Y . Single projection algorithm for variational inequalities in Banach spaces with application to contact problem. Acta Math Sci, 2020, 40B (4): 1045- 1063 |
13 | Popov L D . A modification of the Arrow-Hurwicz method for the search of saddle points. Mathematical notes of the Academy of Sciences of the USSR, 1980, 28, 845- 848 |
14 |
Censor Y , Gibali A , Reich S . The subgradient extragradient method for solving variational inequalities in Hilbert space. J Optim Theory Appl, 2011, 148, 318- 335
doi: 10.1007/s10957-010-9757-3 |
15 | Ceng L C , Yao J C . Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwan J Math, 2006, 10 (5): 1293- 1303 |
16 |
Ceng L C , Hadjisavvas N , Wong N C . Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J Global Optim, 2010, 46, 635- 646
doi: 10.1007/s10898-009-9454-7 |
17 |
Iiduka H , Takahashi W . Strong convergence theorems for nonexpansive mappings and inverse strongly monotone mappings. Nonlinear Anal, 2005, 61 (3): 341- 350
doi: 10.1016/j.na.2003.07.023 |
18 |
Thong D V , Hieu D V . Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems. Numer Algor, 2019, 80, 1283- 1307
doi: 10.1007/s11075-018-0527-x |
19 |
Cai G , Dong Q L , Peng Y . Strong convergence theorems for solving variational inequality problems with pseudo-monotone and non-Lipschitz operators. J Optim Theory Appl, 2021, 188, 447- 472
doi: 10.1007/s10957-020-01792-w |
20 |
Yang H , Agarwal R P , Nashine H K , Liang Y . Fixed point theorems in partially ordered Banach spaces with applications to nonlinear fractional evolution equations. J Fixed Point Theory Appl, 2017, 19, 1661- 1678
doi: 10.1007/s11784-016-0316-x |
21 |
Takahashi W , Toyoda M . Weak convergence theorems for nonexpansive mappings and monotone mappings. J Optim Theory Appl, 2003, 118, 417- 428
doi: 10.1023/A:1025407607560 |
22 |
Nadezhkina N , Takahashi W . Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J Optim Theory Appl, 2006, 128, 191- 201
doi: 10.1007/s10957-005-7564-z |
23 | Diaz J B , Metcalf F T . Subsequential limit points of successive approximations. Trans Amer Math Soc, 1969, 135, 459- 485 |
24 |
Thong D V , Li X H , Dong Q L , Cho Y J , Rassias T M . An inertial Popov's method for solving pseudomonotone variational inequalities. Optim Lett, 2021, 15, 757- 777
doi: 10.1007/s11590-020-01599-8 |
25 |
Bot R I , Csetnek E R . An inertial Tseng's type proximal algorithm for nonsmooth and nonconvex optimization problems. J Optim Theory Appl, 2016, 171, 600- 616
doi: 10.1007/s10957-015-0730-z |
26 |
贺月红, 龙宪军. 求解伪单调变分不等式问题的惯性收缩投影算法. 数学物理学报, 2021, 41A (6): 1897- 1911
doi: 10.3969/j.issn.1003-3998.2021.06.026 |
He Y H , Long X J . An inertial contraction and projection algorithm for pseudomonotone variational inequality problems. Acta Math Sci, 2021, 41A (6): 1897- 1911
doi: 10.3969/j.issn.1003-3998.2021.06.026 |
|
27 |
Dong Q L , Yuan H B , Cho Y J , Rassias T M . Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim Lett, 2018, 12, 87- 102
doi: 10.1007/s11590-016-1102-9 |
28 |
Thong D V , Hieu D V . An inertial method for solving split common fixed point problems. J Fixed Point Theory Appl, 2017, 19, 3029- 3051
doi: 10.1007/s11784-017-0464-7 |
29 | Goebel K , Reich S . Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. New York: Marcel Dekker, 1984 |
30 |
Cottle R W , Yao J C . Pseudo-monotone complementarity problems in Hilbert space. J Optim Theory Appl, 1992, 75, 281- 295
doi: 10.1007/BF00941468 |
31 |
Xu H K . Iterative algorithm for nonlinear operators. Journal of the London Mathematical Society, 2002, 66 (1): 240- 256
doi: 10.1112/S0024610702003332 |
32 |
Mainge P E . The viscosity approximation process for quasi-nonexpansive mapping in Hilbert space. Computers and Mathematics with Applications, 2010, 59, 74- 79
doi: 10.1016/j.camwa.2009.09.003 |
33 |
Denisov S V , Semenov V V , Chabak L M . Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern Syst Anal, 2015, 51, 757- 765
doi: 10.1007/s10559-015-9768-z |
34 |
Iusem A N , Otero R G . Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces. Numer Funct Anal Optim, 2001, 22, 609- 640
doi: 10.1081/NFA-100105310 |
35 |
Yang J . Self-adaptive inertial subgradient extragradient algorithm for solving pseudomonotone variational inequalities. Applicable Analysis, 2021, 100 (5): 1067- 1078
doi: 10.1080/00036811.2019.1634257 |
36 | Harker P T , Pang J S . A damped-Newton method for the linear complementarity problem. Lect Appl Math, 1990, 26, 265- 284 |
37 |
Solodov M V , Svaiter B F . A new projection method for variational inequality problems. SIAM J Control Optim, 1999, 37 (3): 765- 776
doi: 10.1137/S0363012997317475 |
[1] | 李倪洲,赵思颐,张佳玲. 一类可分 Markov 映射的迭代[J]. 数学物理学报, 2025, 45(2): 321-333. |
[2] | 王吴静, 朱美玲, 张永乐. 求解拟单调变分不等式问题与不动点问题公共解的新投影算法[J]. 数学物理学报, 2025, 45(1): 236-255. |
[3] | 张玉婷, 高兴慧, 彭剑英. 分裂可行性问题解集和有限族拟非扩张算子公共不动点集的公共元的迭代算法[J]. 数学物理学报, 2025, 45(1): 256-268. |
[4] | 霍会霞, 李永祥. 一类弯曲的弹性梁方程正解的存在性[J]. 数学物理学报, 2024, 44(6): 1476-1484. |
[5] | 王茹钰, 赵文玲, 宋道金. 最优化与变分不等式的可行解序列的有限终止性[J]. 数学物理学报, 2024, 44(4): 1037-1051. |
[6] | 郭致远, 高源, 孙家成, 张国伟. 具有完全非线性项的非局部梁方程正解[J]. 数学物理学报, 2024, 44(3): 621-636. |
[7] | 高承华, 丁欢欢, 何兴玥. 一类超线性 $k$-Hessian 方程耦合系统的径向解[J]. 数学物理学报, 2024, 44(2): 384-395. |
[8] | 张广新, 杨赟瑞, 宋雪. 具有非局部效应的时滞SEIR系统的周期行波解[J]. 数学物理学报, 2024, 44(1): 140-159. |
[9] | 张志朋, 张亮. 一类带漂移-扩散项的非线性抛物型方程组的能控性[J]. 数学物理学报, 2023, 43(6): 1744-1758. |
[10] | 潘灵荣, 王元恒. Hilbert 空间中不动点问题, 变分不等式系统和分裂均衡问题迭代算法的强收敛定理[J]. 数学物理学报, 2023, 43(6): 1880-1896. |
[11] | 杨蓝翔, 陈艺, 叶明露. 一类拟单调变分不等式的惯性投影算法[J]. 数学物理学报, 2023, 43(2): 593-603. |
[12] | 夏平静, 蔡钢. Hilbert 空间中变分不等式问题的自适应粘性算法[J]. 数学物理学报, 2023, 43(2): 581-592. |
[13] | 宋玉莹, 范虹霞. 一类中立型随机发展方程解的存在性与正则性[J]. 数学物理学报, 2023, 43(1): 238-248. |
[14] | 段洁, 夏福全. 求解变分不等式与不动点问题公共解的新Tseng型外梯度算法[J]. 数学物理学报, 2023, 43(1): 274-290. |
[15] | 徐家发, 杨志春. 高阶Riemann-Liouville型分数阶脉冲微分方程积分边值问题的正解[J]. 数学物理学报, 2023, 43(1): 53-68. |
|