| 1 | Sylvester J . Sur l'équation en matrices px-xq. Comptes Rendus Mathematique, 1884, 99, 67- 71 | | 2 | Roth W E . The equation AX-YB=C and AX-XB=C in matrices. Proceedings of the American Mathematical Society, 1952, 3 (3): 392- 396 | | 3 | Wimmer H K . The matrix equation X - AXB = C and analogue of Roth's theorem. Linear Algebra and its Applications, 1988, 109, 145- 147 | | 4 | Lee S G , Vu Q P . Simultaneous solutions of matrix equations and simultaneous equivalence of matrices. Linear Algebra and its Applications, 2012, 437 (9): 2325- 2339 | | 5 | Dmytryshyn A , Ka?m B . Coupled Sylvester-type matrix equations and block diagonalization. SIAM Journal on Matrix Analysis and Applications, 2015, 36 (2): 580- 593 | | 6 | Eric C . The solution of the matrix equations AXB-CXD=E and (YA-DZ, YC-BZ)=(E, F). Linear Algebra and its Applications, 1987, 93 (87): 93- 105 | | 7 | Baksalary J K , Kala R . The matrix equation AXB+CYD=E. Linear Algebra and its Applications, 1980, 30 (1): 141- 147 | | 8 | Rehman A , Wang Q W , Ali I , et al. A constraint system of generalized Sylvester quaternion matrix equations. Advances in Applied Clifford Algebras, 2017, 27 (11): 3183- 3196 | | 9 | He Z H , Wang Q W , Zhang Y . A system of quaternary coupled Sylvester-type real quaternion matrix equations. Automatica, 2018, 87 (7): 25- 31 | | 10 | Liu X , Song G J , Zhang Y . Determinantal representations of the solutions to systems of generalized Sylvester equations. Advances in Applied Clifford Algebras, 2019, 30, Article number 12 | | 11 | Djordjevi B D . On a singular Sylvester equation with unbounded self-adjoint A and B. Complex Analysis and Operator Theory, 2020, 14, Article number 43 | | 12 | Chen H X , Wang L , Li T T . A note on the solvability for generalized Sylvester equations. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturaless. Serie A. Matemáticas, 2021, 115, Article number 64 | | 13 | Wang Q W , Sun J H , Li S Z . Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra. Linear Algebra and its Applications, 2002, 353 (1): 169- 182 | | 14 | Wang Q W , He Z H . Solvability conditions and general solution for mixed Sylvester equations. Automatica, 2013, 49 (9): 2713- 2719 | | 15 | Wang Q W , He Z H , Zhang Y . Constrained two-sided coupled Sylvester-type quaternion matrix equations. Automatica, 2019, 101, 207- 213 | | 16 | Wang Q W , Wang X , Zhang Y S . A constraint system of coupled two-sided Sylvester-like quaternion tensor equations. Computational and Applied Mathematics, 2020, 39, Article number 317 | | 17 | Wang Q W , Wang X . A system of coupled two-sided Sylvester-type tensor equations over the quaternion algebra. Taiwanese Journal of Mathematics, 2020, 24 (6): 1399- 1416 | | 18 | Rosenblum M . The operator equation BX-XA=Q with selfadjoint A and B. Proceeding of the American Mathematical Society, 1969, 20 (1): 115- 120 | | 19 | Schweinsberg A . The operator equation AX-XB=C with normal A and B. Pacific Journal of Mathematics, 1982, 102 (2): 447- 453 | | 20 | Mansour A . Solvability of AXB-CXD = E in the operators algebra B(H). Lobachevskii Journal of Mathematics, 2010, 31 (3): 257- 261 | | 21 | 童裕孙. 关于算子方程AXB-X=C. 数学年刊, 1986, 7 (3): 325- 337 | | 21 | Tong Y S . On the operator equation AXB-X=C. Chinese Ann Math Ser A, 1986, 7 (3): 325- 337 | | 22 | 严绍宗, 李绍宽. 关于Putnam-Fuglede定理. 中国科学(A辑), 1984, 9, 775- 783 | | 22 | Yan S Z , Li S K . On Putnam-Fuglede theorem. Science China(Series A), 1984, 9, 775- 783 | | 23 | Weiss G . The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators Ⅱ. Journal of Operator Theory, 1981, 5 (1): 3- 16 |
|