数学物理学报 ›› 2022, Vol. 42 ›› Issue (6): 1782-1789.

• 论文 • 上一篇    下一篇

独立同分布随机变量加权和的概率估计

马丽1,2(),叶柳2,*()   

  1. 1 海南师范大学数据科学与智慧教育教育部重点实验室, 海口 571158
    2 海南师范大学数学与统计学院, 海口 571158
  • 收稿日期:2021-08-05 出版日期:2022-12-26 发布日期:2022-12-16
  • 通讯作者: 叶柳 E-mail:malihnsd@163.com;1187621908@qq.com
  • 作者简介:马丽, E-mail: malihnsd@163.com
  • 基金资助:
    国家自然科学基金(11861029);海南省自然科学基金(122MS056);海南省自然科学基金(120RC589);海南省研究生创新科研课题(Ohys2021-301)

Probability Estimation of the Weighted Sum of Independent Identically Distributed Random Variables

Li Ma1,2(),Liu Ye2,*()   

  1. 1 Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou 571158
    2 Department of Mathematics and Statistic, Hainan Normal University, Haikou 571158
  • Received:2021-08-05 Online:2022-12-26 Published:2022-12-16
  • Contact: Liu Ye E-mail:malihnsd@163.com;1187621908@qq.com
  • Supported by:
    the NSFC(11861029);the Hainan Provincial Natural Science Foundation(122MS056);the Hainan Provincial Natural Science Foundation(120RC589);the Hainan Postgraduate Innovative Research Project(Ohys2021-301)

摘要:

$\{\xi_{i}\}_{i=1}^n$为独立同分布的随机变量, 且$P(\xi_i=1)=P(\xi_i=-1)=\frac{1}{2}$.设$\overrightarrow{a}=(a_{1}, \cdots, a_{n})$为与$\{\xi_{i}\}_{i=1}^n$独立的服从超球面$S^{n-1}=\{(a_{1}, \cdots, a_{n})\in\mathbb{R}^n|\sum\limits^n_{i=1}a_i^2=1\}$上均匀分布的随机变量, 该文用极坐标变换得到了$P(|\sum\limits_{i=1}^n{a_i}{\xi_{i}|\leq1})$的表达式.当$n\leq7$时, 该文通过直接计算得到此概率值大于等于$\frac{1}{2}$; 当$n\geq8$时, 该文通过R软件也得到了此概率值大于等于$\frac{1}{2}$.特别地, $\!n=3, 4$时, 借助于贝塔函数, 该文直接证明了该概率值大于等于$\frac{1}{2}$.

关键词: 独立同分布随机变量, 加权和, 概率估计

Abstract:

Let $\xi_{i}(1\leq{i}\leq{n})$ be independent identically distributed random variables satisfying $P(\xi_i=1)=P(\xi_i=-1)=\frac{1}{2}$. Let $\overrightarrow{a}=(a_{1}, \cdots, a_{n})$ be random variables uniformly distributed on $S^{n-1}=\{(a_{1}, \cdots, a_{n})\in\mathbb{R} ^n|\sum\limits^n_{i=1}a_i^2=1\}$ which are independent of $\xi_{i}(1\leq{i}\leq{n})$. In this paper, we get the expression of $P (|\sum\limits_{i=1}^n{a_i}{\xi_{i}|\leq1})$ by polar coordination transformation. For $n\leq7$, we give the value of $P (|\sum\limits_{i=1}^n{a_i}{\xi_{i}|\leq1})$ directly which is no less than one half. For $n\geq8$, we can use R software to calculate the value which is also no less than one half. Moreover, for $n=3, 4$, by Beta function, we show that the probability value is still no less than one half.

Key words: Independent identically distributed random variable, Weighted sum, Probability estimation

中图分类号: 

  • O211.4