| 1 | 靖晓洁, 赵爱民, 刘桂荣. 考虑部分免疫和环境传播的麻疹传染病模型的全局稳定性. 数学物理学报, 2019, 39A (4): 909- 917 | | 1 | Jing X J , Zhao A M , Liu G R . Global stability of a measles epidemic model with partial immunity and environmental transmission. Acta Math Sci, 2019, 39A (4): 909- 917 | | 2 | Joh R I , Wang H , Weiss H , Weitz J S . Dynamics of indirectly transmitted infectious diseases with immunological threshold. B Math Biol, 2009, 71 (4): 845- 862 | | 3 | Magal P , Webb G , Wu Y X . On a vector-host epidemic model with spatial structure. Nonlinearity, 2018, 31 (12): 5589- 5614 | | 4 | Wang J L , Wang J . Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population. J Dyn Differ Equ, 2021, 33 (1): 549- 575 | | 5 | 杨瑜. 一类非局部时滞的SVIR反应扩散模型的全局吸引性. 数学物理学报, 2021, 41A (6): 1864- 1870 | | 5 | Yang Y . Global attractivity of a nonlocal delayed and diffusive SVIR model. Acta Math Sci, 2021, 41A, 1864- 1870 | | 6 | Dwyer G . Density dependence and spatial structure in the dynamics of insect pathogens. The American Naturalist, 1994, 143 (4): 533- 562 | | 7 | Wu Y X , Zou X F . Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates. J Differ Equations, 2018, 264 (8): 4989- 5024 | | 8 | Shi Y , Gao J G , Wang J L . Analysis of a reaction-diffusion host-pathogen model with horizontal transmission. J Math Anal Appl, 2020, 481 (1): 123481 | | 9 | Smith H L . Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Providence, RI: American Mathematical Society, 1995, | | 10 | Martin R H , Smith H L . Abstract functional differential equations and reaction-diffusion systems. Tran Amer Math Soc, 1990, 321 (1): 1- 44 | | 11 | Zhao X Q . Dynamical Systems in Population Biology. New York: Springer, 2003 | | 12 | Lou Y , Zhao X Q . A reaction-diffusion malaria model with incubation period in the vector population. J Math Biol, 2011, 62 (4): 543- 568 | | 13 | Thieme H R . Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J Appl Math, 2009, 70 (1): 188- 211 | | 14 | Wang W D , Zhao X Q . Basic reproduction number for reaction-diffusion epidemic models. SIAM J Appl Dyn Syst, 2012, 11 (4): 1652- 1673 | | 15 | Thieme H R . Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations. J Math Biol, 1992, 30 (7): 755- 763 | | 16 | Hsu S B , Jiang J F , Wang F B . On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat. J Differ Equations, 2010, 248 (10): 2470- 2496 | | 17 | Protter M H , Weinberger H F . Maximum Principles in Differential Equations. New York: Springer-Verlag, 1984 | | 18 | Smith H L , Zhao X Q . Robust persistence for semidynamical systems. Nonlinear Anal, 2001, 47 (9): 6169- 6179 | | 19 | Magal P , Zhao X Q . Global attractors and steady states for uniformly persistent dynamical systems. SIAM J Math Anal, 2005, 37 (1): 251- 275 |
|