1 |
Kermack W O , McKendrick A G . Contributions to the mathematical theory of epidemics. Part Ⅰ. Proc R Soc Lond, 1927, 115, 701- 721
|
2 |
Zhu Q X . pth moment exponential stability of impulsive stochastic functional differential equations with markovian switching. J Franklin Inst, 2014, 351, 3965- 3986
doi: 10.1016/j.jfranklin.2014.04.001
|
3 |
Cai Y L , Kang Y , Banerjee M , Wang W M . A stochastic SIRS epidemic model with infectious force under intervention strategies. J Differ Equ, 2015, 259, 7463- 7502
doi: 10.1016/j.jde.2015.08.024
|
4 |
Zhu Q X , Song S Y , Tang T R . Mean square exponential stability of stochastic nonlinear delay systems. Int J Control, 2017, 90, 2384- 2393
doi: 10.1080/00207179.2016.1249030
|
5 |
Pitchaimani M , Rajasekar S P . Global analysis of stochastic SIR model with variable diffusion rates. Tamkang J Math, 2018, 49, 155- 182
doi: 10.5556/j.tkjm.49.2018.2586
|
6 |
Zhu Q X , Song S Y , Shi P . Effect of noise on the solutions of non-linear delay systems. IET Control Theory Appl, 2018, 12, 1822- 1829
doi: 10.1049/iet-cta.2017.0963
|
7 |
Wang B , Zhu Q X . Stability analysis of semi-Markov switched stochastic systems. Automatica, 2018, 94, 72- 80
doi: 10.1016/j.automatica.2018.04.016
|
8 |
Pitchaimani M , Rajasekar S P , Zhu Q X . Dynamic threshold probe of stochastic SIR model with saturated incidence rate and saturated treatment function. Physica A, 2019, 535, 122300
doi: 10.1016/j.physa.2019.122300
|
9 |
Zhu Q X . Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control. IEEE Trans Automat Contr, 2019, 64, 3764- 3771
doi: 10.1109/TAC.2018.2882067
|
10 |
Hu W , Zhu Q X , Hamid R K . Some improved razumikhin stability criteria for impulsive stochastic delay differential systems. IEEE Trans Automat Contr, 2019, 64, 5207- 5213
doi: 10.1109/TAC.2019.2911182
|
11 |
Rajasekar S P , Pitchaimani M . Qualitative analysis of stochastically perturbed SIRS epidemic model with two viruses. Chaos Solitons Fractals, 2019, 118, 207- 221
doi: 10.1016/j.chaos.2018.11.023
|
12 |
Cai Y L , Kang Y , Wang W M . A stochastic SIRS epidemic model with nonlinear incidence rate. Appl Math Comput, 2017, 305, 221- 240
|
13 |
Liu Q , Jiang D Q , Shi N Z , et al. Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence. Physica A, 2017, 469, 510- 517
doi: 10.1016/j.physa.2016.11.077
|
14 |
Capasso V , Serio G . A generalization of the Kermack-McKendrick deterministic epidemic model. Math Biosci, 1978, 42 (1/2): 43- 61
|
15 |
Xu R , Ma Z E . Global stability of a SIR epidemic model with nonlinear incidence rate and time delay. Nonlinear Analysis: Real World Applications, 2009, 10 (5): 3175- 3189
doi: 10.1016/j.nonrwa.2008.10.013
|
16 |
Xu R , Zhang S H , Zhang F Q . Global dynamics of a delayed SEIS infectious disease model with logistic growth and saturation incidence. Math Method Appl Sci, 2016, 39 (12): 3294- 3308
doi: 10.1002/mma.3774
|