数学物理学报 ›› 2023, Vol. 43 ›› Issue (1): 53-68.
收稿日期:
2021-12-09
修回日期:
2022-10-17
出版日期:
2023-02-26
发布日期:
2023-03-07
通讯作者:
*徐家发, E-mail: 作者简介:
杨志春, E-mail: 基金资助:
Received:
2021-12-09
Revised:
2022-10-17
Online:
2023-02-26
Published:
2023-03-07
Supported by:
摘要:
该文研究了具有半正非线性项和脉冲项的高阶Riemann-Liouville型分数阶脉冲微分方程积分边值问题. 利用不动点指数理论, 在超线性增长和次线性增长等条件下获得了该问题正解的存在性结论, 推广了近期这方面一些已有的成果.
中图分类号:
徐家发, 杨志春. 高阶Riemann-Liouville型分数阶脉冲微分方程积分边值问题的正解[J]. 数学物理学报, 2023, 43(1): 53-68.
Xu Jiafa, Yang Zhichun. Positive Solutions for a High Order Riemann-Liouville Type Fractional Impulsive Differential Equation Integral Boundary Value Problem[J]. Acta mathematica scientia,Series A, 2023, 43(1): 53-68.
[1] |
Wang Y, Liu L, Zhang X, Wu Y. Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection. Applied Mathematics and Computation, 2015, 258: 312-324
doi: 10.1016/j.amc.2015.01.080 |
[2] | Zhong Q, Zhang X, Gu L, Lei L, Zhao Z. Multiple positive solutions for singular higher-order semipositone fractional differential equations with $p$-Laplacian. Nonlinear Analysis: Modelling and Control, 2020, 25(5): 806-826 |
[3] |
Hao X, Sun H, Liu L, Wang D. Positive solutions for semipositone fractional integral boundary value problem on the half-line. RACSAM, 2019, 113(4): 3055-3067
doi: 10.1007/s13398-019-00673-w |
[4] | Ding Y, Jiang J, O'Regan D, Xu J. Positive solutions for a system of Hadamard-type fractional differential equations with semipositone nonlinearities. Complexity, 2020, Aarticle ID 9742418 |
[5] |
Xu J, Goodrich C, Cui Y. Positive solutions for a system of first-order discrete fractional boundary value problems with semipositone nonlinearities. RACSAM, 2019, 113(2): 1343-1358
doi: 10.1007/s13398-018-0551-7 |
[6] |
Yang W. Positive solutions for nonlinear semipositone fractional $q$-difference system with coupled integral boundary conditions. Applied Mathematics and Computation, 2014, 244: 702-725
doi: 10.1016/j.amc.2014.07.039 |
[7] |
Yuan C. Two positive solutions for $(n-1,1)$-type semipositone integral boundary value problems for coupled systems of nonlinear fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(2): 930-942
doi: 10.1016/j.cnsns.2011.06.008 |
[8] | Xu X, Jiang D, Yuan C. Multiple positive solutions to singular positone and semipositone Dirichlet-type boundary value problems of nonlinear fractional differential equations. Nonlinear Analysis: Theory Methods & Applications, 2011, 74(16): 5685-5696 |
[9] | Henderson J, Luca R. Existence of positive solutions for a system of semipositone fractional boundary value problems. Electronic Journal of Qualitative Theory of Differential Equations, 2016, 22: 1-28 |
[10] |
Ege S, Topal F. Existence of multiple positive solutions for semipositone fractional boundary value problems. Filomat, 2019, 33(3): 749-759
doi: 10.2298/FIL1903749E |
[11] |
Xu J, Wei Z, Ding Y. Positive solutions for a boundary-value problem with Riemann-Liouville fractional derivative. Lithuanian Mathematical Journal, 2012, 52(4): 462-476
doi: 10.1007/s10986-012-9187-z |
[12] |
Jie Z, Feng M. Green's function for Sturm-Liouville-type boundary value problems of fractional order impulsive differential equations and its application. Boundary Value Problems, 2014, 2014: Article 69
doi: 10.1186/1687-2770-2014-69 |
[13] |
Wang G, Ahmad B, Zhang L. Some existence results for impulsive nonlinear fractional differential equations with mixed boundary conditions. Computers and Mathematics with Applications, 2011, 62: 1389-1397
doi: 10.1016/j.camwa.2011.04.004 |
[14] |
Zhang K, Xu J. Positive solutions for an impulsive boundary value problem with Caputo fractional derivative. Journal of Nonlinear Sciences and Applications, 2016, 9(6): 4628-4638
doi: 10.22436/jnsa.009.06.101 |
[15] |
Zhao K. Impulsive integral boundary value problems of the higher-order fractional differential equation with eigenvalue arguments. Advances in Difference Equations, 2015, 2015: Article 382
doi: 10.1186/s13662-015-0725-y |
[16] |
Ahmad B, Sivasundaram S. Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations. Nonlinear Analysis: Hybrid Systems, 2009, 3(3): 251-258
doi: 10.1016/j.nahs.2009.01.008 |
[17] |
Ahmad B, Sivasundaram S. Existence of solutions for impulsive integral boundary value problems of fractional order. Nonlinear Analysis: Hybrid Systems, 2010, 4(1): 134-141
doi: 10.1016/j.nahs.2009.09.002 |
[18] |
Wang G, Ahmad B, Zhang L, Nieto J. Comments on the concept of existence of solution for impulsive fractional differential equations. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(3): 401-403
doi: 10.1016/j.cnsns.2013.04.003 |
[19] |
Bouzaroura A, Mazouzi S. Existence results for certain multi-orders impulsive fractional boundary value problem. Results in Mathematics, 2014, 66(1/2): 1-20
doi: 10.1007/s00025-014-0403-5 |
[20] |
Tian Y, Bai Z. Existence results for the three-point impulsive boundary value problem involving fractional differential equations. Computers & Mathematics with Applications, 2010, 59(8): 2601-2609
doi: 10.1016/j.camwa.2010.01.028 |
[21] |
Fu X, Bao X. Some existence results for nonlinear fractional differential equations with impulsive and fractional integral boundary conditions. Advances in Difference Equations, 2014, 2014: Article 129
doi: 10.1186/1687-1847-2014-129 |
[22] |
Liu Z, Lu L, Szanto I. Existence of solutions for fractional impulsive differential equations with $p$-Laplacian operator. Acta Mathematica Hungarica, 2013, 141(3): 203-219
doi: 10.1007/s10474-013-0305-0 |
[23] |
Zhao X, Ge W. Some results for fractional impulsive boundary value problems on infinite intervals. Applications of Mathematics, 2011, 56(4): 371-387
doi: 10.1007/s10492-011-0021-4 |
[24] |
Liu Y. Solvability of impulsive periodic boundary value problems for higher order fractional differential equations. Arabian Journal of Mathematics, 2016, 5(4): 195-214
doi: 10.1007/s40065-016-0153-1 |
[25] |
Wang H, Lin X. Anti-periodic BVP of fractional order with fractional impulsive conditions and variable parameter. Journal of Applied Mathematics and Computing, 2017, 53(1/2): 285-301
doi: 10.1007/s12190-015-0968-5 |
[26] | El-shahed M. Positive solutions for boundary-value problems of nonlinear fractional differential equation. Abstract and Applied Analysis, 2007, ID: 010368 |
[27] | Kilbas A, Srivastava H, Trujillo J. Theory and Applications of Fractional Differential Equations. Amsterdam: NorthHolland, 2006 |
[28] | Podlubny I. Fractional Differential Equations, Mathematics in Science and Engineering, Vol 198. San Diego: Academic Press, 1999 |
[29] | Samko S, Kilbas A, Marichev O. Fractional Integrals and Derivatives: Theory and Applications. Yverdon: Gordon and Breach Science Publisher, 1993 |
[30] | Guo D, Lakshmikantham V. Nonlinear Problems in Abstract Cones. Orlando: Academic Press, 1988 |
[1] | 梁青. 两类带 Markov 切换的随机比例泛函微分方程全局解的存在唯一性和稳定性[J]. 数学物理学报, 2025, 45(4): 1184-1205. |
[2] | 曾夏萍, 卢文雯, 庞国萍, 梁志清. 具有季节性切换反应及脉冲扰动的鱼类单种群动力学模型[J]. 数学物理学报, 2025, 45(4): 1206-1216. |
[3] | 姚旺进, 张慧萍. 一类具有瞬时和非瞬时脉冲的 |
[4] | 胡冰冰, 高建芳. 一类具有变系数的非线性延迟微分方程数值解的振动性分析[J]. 数学物理学报, 2025, 45(1): 203-213. |
[5] | 张伟, 陈柯元, 毋祎, 倪晋波. 多项 Caputo 分数阶微分方程 Dirichlet 问题 Lyapunov 型不等式[J]. 数学物理学报, 2024, 44(6): 1433-1444. |
[6] | 张怡然, 黎定仕. 脉冲分数阶格点系统的不变测度[J]. 数学物理学报, 2024, 44(6): 1563-1576. |
[7] | 霍会霞, 李永祥. 一类弯曲的弹性梁方程正解的存在性[J]. 数学物理学报, 2024, 44(6): 1476-1484. |
[8] | 张潇, 张宏武. 分数阶椭圆方程反边值问题的分数 Tikhonov 正则化方法[J]. 数学物理学报, 2024, 44(4): 978-993. |
[9] | 郭致远, 高源, 孙家成, 张国伟. 具有完全非线性项的非局部梁方程正解[J]. 数学物理学报, 2024, 44(3): 621-636. |
[10] | 宾茂君, 施翠云. 半线性Riemann-Liouville分数阶发展方程反馈时间最优控制[J]. 数学物理学报, 2024, 44(3): 687-698. |
[11] | 王文霞. 带有 $p$-Laplacian 算子的分数阶非线性积分边值问题的唯一正解与和算子方法[J]. 数学物理学报, 2023, 43(6): 1731-1743. |
[12] | 李晓东, 高红亮, 徐晶. 带有凹非线性项的平均曲率半正问题正解的确切个数[J]. 数学物理学报, 2023, 43(5): 1341-1349. |
[13] | 陈清方,廖家锋,元艳香. 一类带临界指数的 Schrödinger-Newton 系统正解的存在性[J]. 数学物理学报, 2023, 43(5): 1373-1381. |
[14] | 康笑东, 范虹霞. 一类具有瞬时脉冲的二阶发展方程的近似可控性[J]. 数学物理学报, 2023, 43(2): 421-432. |
[15] | 廖丹, 张慧萍, 姚旺进. 基于变分方法的脉冲微分方程 Neumann 边值问题多重解的存在性[J]. 数学物理学报, 2023, 43(2): 447-457. |
|