| [1] | Marchenko V A. Sturm-Liouville Operators and Applications. Operator Theory Advances & Applications 22. Basle: Birkhauser Verlag, 1986 |
| [2] | Zakhariev B N, Suzko A A. Direct and Inverse Problems. Berlin-Heidelberg: Springer, 1990 |
| [3] | Calvert J M, Davison W D. Oscillation theory and computational procedures for matrix Sturm-Liouville eigenvalue problems with an application to the hydrogen molecular ion. Journal of Physics a Mathematical & General, 1968, 2(3): 278-292 |
| [4] | Shen C L, Shieh C T. On the multiplicity of eigenvalues of a vectorial Sturm-Liouville differential equations and some related spectral problems. Proc Amer Math Soc, 1999, 127: 2943-2952 |
| [5] | Kong Q. Multiplicities of eigenvalues of a vector-valued Sturm-Liouville problem. Mathematika, 2002, 49: 119-127 |
| [6] | Yang C F, Huang Z Y, Yang X P. The multiplicity of spectra of a vectorial Sturm-Liouville differential equation of dimension two and some applications. Rocky Mountain J Math, 2007, 37(4): 1379-1398 |
| [7] | Veliev O A. Non-self-adjoint Sturm-Liouville operators with matrix potentials. Mathematical Notes, 2007, 81(4): 496-506 |
| [8] | Seref F, Veliev O A. On sharp asymptotic formulas for the Sturm-Liouville operator with a matrix potential. Mathematical Notes, 2016, 100(1/2): 291-297 |
| [9] | McLaughlin J R. Inverse spectral theory using nodal points as data-a uniqueness result. J Differential Equations, 1988, 73(2): 354-362 |
| [10] | Chen X, Cheng Y H, Law C K. Reconstructing potentials from zeros of one eigenfunction. Trans Amer Math So, 2011, 363: 4831-4851 |
| [11] | Gesztesy F, Simon B. Inverse spectral analysis with partial information on the potential: II. The case of discrete spectrum. Trans Amer Math Soc, 2000, 352: 2765-2787 |
| [12] | Guo Y X, Wei G S. Inverse problems: dense nodal subset on an interior subinterval. J Differential Equations, 2013, 255(7): 2002-2017 |
| [13] | Yang X F. A new inverse nodal problem. J Differential Equations, 2001, 169: 633-653 |
| [14] | Yurko V. Inverse nodal problems for Sturm-Liouville operators on star-type graphs. J Inverse Ill-Posed Probl, 2008, 16(7): 715-722 |
| [15] | Shen C L, Shieh C T. An inverse nodal problem for vectorial Sturm-Liouville equations. Inverse Problems, 2000, 16(2): 349-356 |
| [16] | Cheng Y H, Shieh C T, Law C K. A vectorial inverse nodal problem. Proc Amer Math Soc, 2005, 133(5): 1475-1484 |
| [17] | Agranovich Z S, Marchenko V A. The Inverse Problem of Scattering Theory. New York-London: Gordon and Breach Science Publishers, 1963 |
| [18] | Shen C L. Some inverse spectral problems for vectorial Sturm-Liouville equations. Inverse Problems, 2001, 17(5): 1253-1294 |
| [19] | Naimark M A. Linear Differential Operators, Part I. New York: Frederick Ungar Publishing Co, 1967 |
| [20] | Weidmann J. Spectral Theory of Ordinary Differential Operators. Lecture Notes in Mathematics 1258. Berlin: Springer Verlag, 1987 |