| [1] | Nash J. Equilibrium points in n-person games. P Natl Acad Sci, 1950$a$, 36: 48-49 |
| [2] | Nash J. Noncooperative Games. Princeton: Princeton University, 1950 |
| [3] | Sandholm W H. Population Games and Evolutionary Dynamics. Cambridge: MIT Press, 2010 |
| [4] | Yang G H, Yang H. Stability of weakly Pareto-Nash equilibria and Pareto-Nash equlibria for multiobjective population games. Set-Valued Var Anal, 2017, 25(2): 427-439 |
| [5] | Yang Z, Zhang H Q. Essential stability of cooperative equilibria for population games. Optim Lett, 2019, 13: 1573-1582 |
| [6] | Kajii A. A generalization of Scarf's theorem: an $\alpha$-core existence theorem without transitivity or completeness. J Econ Theory, 1992, 56: 194-205 |
| [7] | Lahkar R, Sandholm W H. The projection dynamic and the geometry of population games. Games Econ Behav, 2008, 64(2): 565-590 |
| [8] | Sandholm W H. Large population potential games. J Econ Theory, 2009, 144(4): 1710-1725 |
| [9] | Reluga T C, Galvani A P. A general approach for population games with application to vaccination. Mathematical Biosciences, 2011, 230(2): 67-78 |
| [10] | 王明婷, 杨光惠. 群体博弈弱Nash均衡的存在性与稳定性. 数学的实践与认识, 2021, 51(15): 187-193 |
| [10] | Wang M T, Yang G H. The existence and generic stability of weak Nash equilibria for population games. Mathematics in Practice and Theory, 2021, 51(15): 187-193 |
| [11] | 陈华鑫, 贾文生. 群体博弈的逼近定理及通有收敛性. 数学物理学报, 2021, 41A(5): 1566-1573 |
| [11] | Chen H X, Jia W S. Approximation theorem and general convergence of population games. Acta Math Sci, 2021, 41A(5): 1566-1573 |
| [12] | Yang Z, Meng D W, Wang A Q. On the existence of ideal Nash equilibria in discontinuous games with infinite criteria. Oper Res Lett, 2017, 45: 362-365 |
| [13] | Anderlini L, Canning D. Structural stability implies robustness to bounded rationality. J Econ Theory, 2001, 101(2): 395-422 |
| [14] | Yu C, Yu J. On structural stability and robustness to bounded rationality. Nonlinear Anal-TMA, 2006, 65(3): 583-592 |
| [15] | Yu C, Yu J. Bounded ratinality in multiobjective games. Nonlinear Anal-TMA, 2007, 67: 930-937 |
| [16] | 王能发. 有限理性下不确定性博弈均衡的稳定性. 应用数学学报, 2017, 40(4): 562-572 |
| [16] | Wang N F. The stability of equilibrium point for uncertain game under bounded rationality. Acta Math Appl Sin, 2017, 40(4): 562-572 |
| [17] | 杨光惠, 杨辉, 向淑文. 有限理性下参数最优化问题解的稳定性. 运筹学学报, 2016, 20(4): 1-10 |
| [17] | Yang G H, Yang H, Xiang S W. Stability of solutions to parametric optimization problems under bounded rationality. Operations Research Transactions, 2016, 20(4): 1-10 |
| [18] | 俞建. 几类考虑有限理性平衡问题解的稳定性. 系统科学与数学, 2009, 29: 999-1008 |
| [18] | Yu J. Bounded rationality and stability of solution of some equilibrium problems. Journal of Systems Science and Mathematical Sciences, 2009, 29: 999-1008 |
| [19] | 俞建. 博弈论与非线性分析续论. 北京: 科学出版社, 2011 |
| [19] | Yu J. Game Theory and Nonlinear Analysis (Continued). Beijing: Science Press, 2011 |
| [20] | Deguire P, Tan K K, Yuan X Z. The study of maximal elements, fixed points for $L_{s}$-majorized mappings and their applications to minimax and variational inequalities in product topological spaces. Nonlinear Analysis, 1999, 37(3): 933-951 |