| [1] | Foias C, Prodi G. Sur les solutions statistiques des équations de Naiver-Stokes. Ann Mat Pur Appl, 1976, 111: 307-330 | | [2] | Foias C, Manley O, Rosa R, Temam R. Navier-Stokes Equations and Turbulence. Cambridge: Cambridge University Press, 2001 | | [3] | Vishik M, Fursikov A. Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations. Siberian Math J, 1978, 19: 710-729 | | [4] | Chekroun M, Glatt-Holtz N. Invariant measures for dissipative dynamical systems: Abstract results and applications. Commun Math Phys, 2012, 316(3): 723-761 | | [5] | ?ukaszewicz G, Robinson J C. Invariant measures for non-autonomous dissipative dynamical systems. Discrete Cont Dyn Syst, 2014, 34: 4211-4222 | | [6] | Wang X. Upper-semicontinuity of stationary statistical properties of dissipative systems. Discrete Cont Dyn Syst, 2009, 23: 521-540 | | [7] | Bronzi A, Mondaini C, Rosa R. Trajectory statistical solutions for three-dimensional Navier-Stokes-like systems. SIAM J Math Anal, 2014, 46: 1893-1921 | | [8] | Bronzi A, Mondaini C, Rosa R. Abstract framework for the theory of statistical solutions. J Differ Equations, 2016, 260: 8428-8484 | | [9] | Zhao C, Li Y, Caraballo T. Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications. J Differ Equations, 2020, 269: 467-494 | | [10] | Jiang H, Zhao C. Trajectory statistical solutions and Liouville type theorem for nonlinear wave equations with polynomial growth. Adv Differential Equ, 2021, 26(3/4): 107-132 | | [11] | Zhao C, Caraballo T. Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations. J Differ Equations, 2019, 266: 7205-7229 | | [12] | Zhao C, Li Y, ?ukaszewicz G. Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids. Z Angew Math Phys, 2020, 71: Article number 141 | | [13] | Zhao C, Li Y, Sang Y. Using trajectory attractor to construct trajectory statistical solution for the 3D incompressible micropolar flows. Z Angew Math Mech, 2020, 100: e201800197 | | [14] | Zhao C, Song Z, Caraballo T. Strong trajectory statistical solutions and Liouville type equation for dissipative Euler equations. Appl Math Lett, 2020, 99: 105981 | | [15] | Zhao C, Li Y, Song Z. Trajectory statistical solutions for the 3D Navier-Stokes equations: The trajectory attractor approach. Nonlinear Anal: RWA, 2020, 53: 103077 | | [16] | Zhao C, Wang J, Caraballo T. Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes equations. J Differ Equations, 2022, 317: 474-494 | | [17] | Carrol T, Pecora L. Synchronization in chaotic systems. Phys Rev Lett, 1990, 64: 821-824 | | [18] | Chow S N, Mallet-Paret J, Van Vleck E S. Pattern formation and spatial chaos in spatially discrete evolution equations. Rand Comp Dyn, 1996, 4: 109-178 | | [19] | Chua L O, Yang L. Cellular neural networks: Theory. IEEE Trans Circ Syst, 1988, 35: 1257-1272 | | [20] | Chua L O, Yang L. Cellular neural networks: Applications. IEEE Trans Circ Syst, 1988, 35: 1273-1290 | | [21] | Erneux T, Nicolis G. Propagating waves in discrete bistable reaction diffusion systems. Physica D, 1993, 67: 237-244 | | [22] | Wang B. Dynamics of systems on infinite lattices. J Differ Equations, 2006, 221: 224-245 | | [23] | Zhou S, Shi W. Attractors and dimension of dissipative lattice systems. J Differ Equations, 2006, 224: 172-204 | | [24] | Wang B. Asymptotic behavior of non-autonomous lattice systems. J Math Anal Appl, 2007, 331: 121-136 | | [25] | Zhao X, Zhou S. Kernel sections for processes and nonautonomous lattice systems. Discrete Cont Dyn Syst-B, 2008, 9(3/4): 763-785 | | [26] | Zhou S, Zhao C. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Commun Pure Appl Anal, 2007, 21: 1087-1111 | | [27] | Zhao C, Zhou S. Attractors of retarded first order lattice systems. Nonlinearity, 2007, 20: 1987-2006 | | [28] | Han X, Shen W, Zhou S. Random attractors for stochastic lattice dynamical systems in weighted spaces. J Differ Equations, 2011, 250: 1235-1266 | | [29] | Zhao C, Zhou S. Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications. J Math Anal Appl, 2009, 354: 78-95 | | [30] | Zhou S. Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise. J Differ Equations, 2017, 263: 2247-2279 | | [31] | Abdallah A Y. Uniform exponential attractors for first order non-autonomous lattice dynamical systems. J Differ Equations, 2011, 251: 1489-1504 | | [32] | 赵才地, 周盛凡. 格点系统存在指数吸引子的充分条件及应用. 数学学报, 2010, 53: 233-242 | | [32] | Zhao C, Zhou S. Sufficient conditions for the existence of exponential attractor for lattice system. Acta Math Sin, 2010, 53: 233-242 | | [33] | Zhou S, Han X. Pullback exponential attractors for non-autonomous lattice systems. J Dyn Differ Equ, 2012, 24(3): 601-631 | | [34] | Wang Z, Zhou S. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems in weighted spaces. Adv Differ Equ, 2016, Article number 310 | | [35] | Han X, Kloeden P E. Pullback and forward dynamics of nonautonomous Laplacian lattice systems on weighted spaces. Discrete Cont Dyn Syst-S, 2022, 15(10): 2909-2927 | | [36] | Abdallah A Y, Abu-Shaab H N, Ai-Khoder T M, et al. Dynamics of non-autonomous first order lattice systems in weighted spaces. J Math Phys, 2022, 63(10): 102703 | | [37] | 李永军, 桑燕苗, 赵才地. 一阶格点系统的不变测度与Liouville型方程. 数学物理学报, 2020, 40A(2): 328-339 | | [37] | Li Y, Sang Y, Zhao C. Invariant measures and Liouville type theorem for fisrt-order lattice system. Acta Math Sci, 2020, 40A(2): 328-339 | | [38] | Zhao C, Xue G, ?ukaszewicz G. Pullabck attractors and invariant measures for the discrete Klein-Gordon-Schr?dinger equatios. Discrete Cont Dyn Syst-B, 2018, 23: 4021-4044 | | [39] | Carvalho A, Langa J A, Robinson J C. Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems. New York: Springer, 2013 | | [40] | Lorentz G G, Golitschek M, Makovoz Y. Constructive Approximation:Advanced Problems. Berlin: Springer, 1996 |
|