| [1] | Kyrchei I. Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations. Linear Algebra Appl, 2013, 438(1): 136-152 | | [2] | Diao H A, Wei Y M, Xie P P. Small sample statistical condition estimation for the total least squares problem. Numer Algoritm, 2017, 5(2): 435-455 | | [3] | Donchenko V S, Kirichenko N F. Generalized inverse in control with constraints. Cybern Syst Anal, 2003, 39(6): 854-861 | | [4] | Campbell S L, Meyer C D, Rose N J. Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients. SIAM J Appl Math, 1976, 31(3): 411-425 | | [5] | Meyer C D, Shoaf J M. Updating finite Markov chains by using techniques of group matrix inversion. J Stat Comput Sim, 1980, 11(3/4): 163-181 | | [6] | Ren B Y, Wang Q W, Chen X Y. The $\eta$-anti-Hermitian solution to a system of constrained matrix equations over the generalized Segre quaternion algebra. Symmetry, 2023, 15(3): 592 | | [7] | Chen X Y, Wang Q W. The $\eta$-(anti-) Hermitian solution to a constrained Sylvester-type generalized commutative quaternion matrix equation. Banach J Math Anal, 2023, 17: Article number 40 | | [8] | Xu X L, Wang Q W. The consistency and the general common solution to some quaternion matrix equations. Ann Funct Anal, 2023, 14(3): 53 | | [9] | Brock K G. A note on commutativity of a linear operatorand its Moore-Penrose inverse. Numer Func Anal Opt, 1990, 11(7/8): 673-678 | | [10] | Rako? evi? V. Moore-Penrose inverse in Banach algebras. Proc R Ir Acad Ser, 1988, 88(1): 57-60 | | [11] | Meenakshi A R. Generalized inverses of matrices in Minkowski space. Proc Nat Seminar Alg Appl, 2000, 1: 1-14 | | [12] | Ramon C, Rauscher E A. Superluminal transformations in complex Minkowski spaces. Found Phys, 1980, 10(7/8): 661-669 | | [13] | Renardy M. Singular value decomposition in Minkowski space. Linear Algebra Appl, 1996, 236: 53-58 | | [14] | Xing Z F. On the deterministic and non-deterministic Mueller matrix. J Mod Optic, 1992, 39(3): 461-484 | | [15] | K?l??cman A, Al-Zhour Z. The representation and approximation for the weighted Minkowski inverse in Minkowski space. Math Comput Model, 2008, 47(3/4): 363-371 | | [16] | Al-Zhour Z. Extension and generalization properties of the weighted Minkowski inverse in a Minkowski space for an arbitrary matrix. Comput Math Appl, 2015, 70(5): 954-961 | | [17] | Meenakshi A R, Krishnaswamy D. On sums of range symmetric matrices in Minkowski space. B Malays Math Sci So, 2002, 25(2): 137-148 | | [18] | Meenakshi A R, Krishnaswamy D. Product of range symmetric block matrices in Minkowski space. B Malays Math Sci So, 2006, 29(1): 59-68 | | [19] | Wang H X, Li N, Liu X J. The $\mathfrak{m}$-core inverse and its applications. Linear Multilinear A, 2021, 69(13): 2491-2509 | | [20] | Wang H X, Wu H, Liu X J. The $\mathfrak{m}$-core-EP inverse in Minkowski space. B Iran Math Soc, 2022, 48(5): 2577-2601 | | [21] | Wang H X, Chen J L. Weak group inverse. Open Math, 2018, 16(1): 1218-1232 | | [22] | Prasad K M, Mohana K S. Core-EP inverse. Linear Multilinear A, 2014, 62(6): 792-802 | | [23] | Wang H X, Liu X J. The weak group matrix. Aequationes Math, 2019, 93(7): 1261-1273 | | [24] | Ferreyra D E, Orquera V, Thome N. A weak group inverse for rectangular matrices. RACSAM Rev R Acad A, 2019, 113(4): 3727-3740 | | [25] | Zhou M M, Chen J L, Zhou Y K. Weak group inverses in proper *-rings. J Algebra Appl, 2020, 19(12): 2050238 | | [26] | Xu S Z, Wang H X, Chen J L, et al. Generalized WG inverse. J Algebra Appl, 2021, 20(5): 2150072 | | [27] | Mosi? D, Stanimirovi? P S. Representations for the weak group inverse. Appl Math Comput, 2021, 397(6): 125957 | | [28] | Yan H, Wang H X, Zuo K Z, et al. Further characterizations of the weak group inverse of matrices and the weak group matrix. AIMS Math, 2021, 6(9): 9322-9341 | | [29] | Zhou M M, Chen J L, Zhou Y K, et al. Weak group inverses and partial isometries in proper $\ast$-rings. Linear Multilinear A, 2022, 70(19): 4528-4543 | | [30] | Mosi′c D, Zhang D C. Weighted weak group inverse for Hilbert space operators. Front Math China, 2020, 15(6): 709-726 | | [31] | Ferreyra D E, Orquera V, Thome N. Representations of the weighted WG inverse and a rank equation’s solution. Linear Multilinear A, 2023, 71(2): 226-241 | | [32] | Zhou Y K, Chen J L, Zhou M M. $m$-weak group inverses in a ring with involution. RACSAM Rev R Acad A, 2021, 115(1): 1-13 | | [33] | Wu H, Wang H X, Jin H W. The $\mathfrak{m}$-WG inverse in Minkowski space. Filomat, 2022, 36(4): 1125-1141 | | [34] | Wang H X. Core-EP decomposition and its applications. Linear Algebra Appl, 2016, 508: 289-300 | | [35] | Wang G R, Wei Y M, Qiao S Z. Generalized Inverses:Theory and Computations. Beijing: Science Press, 2018 | | [36] | Stewart G W. On the continuity of the generalized inverse. SIAM J Appl Math, 1969, 17(1): 33-45 | | [37] | Stanimirovi? P S, Cvetkovi? -Ili? D S. Successive matrix squaring algorithm for computing outer inverses. Appl Math Comput, 2008, 203(1): 19-29 |
|