| [1] | Fokas A S. The Korteweg-de Vries equation and beyond. Acta Appl Math, 1995, 39: 295-305 | | [2] | Camassa R, Holm D. An integrable shallow water equation with peaked solitons. Phys Rev Lett, 1993, 71(11): 1661-1664 | | [3] | Fokas A. On a class of physically important integrable equations. Phys D, 1995, 87: 145-150 | | [4] | Fuchssteiner B. Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation. Phys D, 1996, 95: 229-243 | | [5] | Olver P, Rosenau P. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys Rev E, 1996, 53: 1900-1906 | | [6] | Qiao Z. A new integrable equation with cuspons and W/M-shape-peaks solitons. J Math Phys, 2006, 47: 112701 | | [7] | Fisher M, Schiff J. The Camassa-Holm equation: Conserved quantities and the initial value problem. Phys Lett A, 1999, 259(5): 371-376 | | [8] | Himonas A, Mantzavinos D. The Cauchy problem for the Fokas-Olver-Rosenau-Qiao equation. Nonlinear Anal, 2014, 95: 499-529 | | [9] | Chang X, Szmigielski J. Lax integrability and the peakon problem for the modified Camassa-Holm equation. Commun Math Phys, 2018, 358: 295-341 | | [10] | Kang J, Liu X, Qu C. On an integrable multi-component Camassa-Holm system arising from Mbius geometry. Proc R Soc A, 2021, 477(2251): 20210164 | | [11] | Yang S, Qiao Z. Qualitative analysis for a two-component peakon system with cubic nonlinearity. J Math Phys, 2022, 63: 121504 | | [12] | Chen M, Liu Y, Qu C, Zhang H. Oscillation-Induced blow-up to the modified Camassa-Holm equation with linear dispersion. Adv Math, 2015, 272: 225-251 | | [13] | Gui G, Liu Y, Olver P, Qu C. Wave-Breaking and peakons for a modified Camassa-Holm equation. Commun Math Phys, 2013, 319: 731-759 | | [14] | Constantin A, Escher J. Well-posedness, global existence, and blow up phenomena for a periodic quasi-linear hyperbolic equation. Comm Pure Appl Math, 1998, 51(5): 475-504 | | [15] | Liu X, Qiao Z, Yin Z. On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity. Commun Pure Appl Anal, 2014, 13: 1283-1304 | | [16] | Xu R, Yang Y. Local well-posedness and decay for some generalized shallow water equations. J Differ Equations, 2023, 367: 689-728 | | [17] | Chen M, Guo F, Liu Y, Qu C. Analysis on the blow-up of solutions to a class of integrable peakon equations. J Funct Anal, 2016, 270(6): 2343-2374 | | [18] | Xia B, Qiao Z, Li J. An integrable system with peakon, complex peakon, weak kink, and kink-peakon interactional solutions. Commun Nonlinear Sci Numer Simulat, 2018, 63: 292-306 | | [19] | Qin G, Yan Z, Guo B. The Cauchy problem and multi-peakons for the mCH-Novikov-CH equation with quadratic and cubic nonlinearities. J Dyn Differ Equ, 2023, 35: 3295-3354 | | [20] | Himonas A A, Misiolek G, Ponce G, Zhou Y. Persistence properties and unique continuation of solutions of the Camassa-Holm equation. Comm Math Phys, 2007, 271: 511-522 | | [21] | Cui W, Han L. Infinite propagation speed and asymptotic behavior for a generalized Camassa-Holm equation with cubic nonlinearity. Appl Math Lett, 2018, 77: 13-20 | | [22] | Tian S. Infinite propagation speed of a weakly dissipative modified two-component Dullin-Gottwald-Holm system. Appl Math Lett, 2019, 89: 1-7 | | [23] | Zhu M, Jiang Z, Qiao Z. Persistence property and infinite propagation speed for the b-family of Fokas- Olver-Rosenau-Qiao (bFORQ) model. Appl Math Lett, 2022, 124: 10765 | | [24] | Zhu M, Jiang Z, Qiao Z. Analytical properties for the fifth-order b-family Novikov model. J Evol Equ, 2022, 22: Article number 19 | | [25] | 田守富. 一个弱耗散修正的二分量Dullin-Gottwald-Holm 系统解的行为研究. 数学物理学报, 2020, 40A(5): 1204-1223 | | [25] | Tian S F. On the behavior of the solution of a weakly dissipative modified two-component Dullin-Gottwald- Holm system. Acta Math Sci, 2020, 40A(5): 1204-1223 |
|