| [1] | Acerbi E, Mingione G. Regularity results for stationary electro-rheological fluids. Arch Ration Mech Anal, 2002, 164(3): 213-259 | | [2] | Antontsev S N, Rodrigues J F. On stationary thermo-rheological viscous flows. Ann Univ Ferrara Sez VII Sci Mat, 2006, 52(1): 19-36 | | [3] | Cao Y, Yin J X, Wang C P. Cauchy problems of semilinear pseudo-parabolic equations. J Differential Equations, 2009, 246(12): 4568-4590 | | [4] | Cao Y, Zhao Q T. Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electron Res Arch, 2021, 29(6): 3833-3851 | | [5] | Chen Y, Levine S, Rao M. Variable exponent, linear growth functionals in image restoration. SIAM J Math Appl, 2006, 66(4): 1383-1406 | | [6] | Chen Y X, R?dulescu V D, Xu R Z. High energy blowup and blowup time for a class of semilinear parabolic equations with singular potential on manifolds with conical singularities. Commun Math Sci, 2023, 21(1): 25-63 | | [7] | Fu Y Q, Xiang M Q. Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent. Appl Anal, 2016, 95(3): 524-544 | | [8] | Han Y Z. Finite time blowup for a semilinear pseudo-parabolic equation with general nonlinearity. Appl Math Lett, 2020, 99(7): 105986 | | [9] | Han Y Z, Li J. Global existence and finite time blow-up of solutions to a nonlocal $ p $-laplace equation. Math Model Anal, 2019, 24(2): 195-217 | | [10] | Han Y Z, Li Q. Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy. Comput Math Appl, 2018, 75(9): 3283-3297 | | [11] | Khelghati A, Baghaei K. Blow-up phenomena for a nonlocal semilinear parabolic equation with positive initial energy. Comput Math Appl, 2015, 70(5): 896-902 | | [12] | Lian W, Wang J, Xu R Z. Global existence and blow up of solutions for pseudo-parabolic equation with singular potential. J Differential Equations, 2020, 269(6): 4914-4959 | | [13] | Lin Q, Tian X T, Xu R Z, Zhang M N. Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy. Discrete Contin Dyn Syst Ser S, 2020, 13(7): 2095-2107 | | [14] | Liu Y, Moon B, R?dulescu V D, et al. Qualitative properties of solution to a viscoelastic Kirchhoff-like plate equation. J Math Phys, 2013, 64: 051511 | | [15] | Pan N, Pucci P, Xu R Z, Zhang B L. Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms. J Evol Equ, 2019, 19(3): 615-643} | | [16] | Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975, 22(3/4): 273-303 | | [17] | Qu C Y, Zhou W S. Asymptotic analysis for a pseudo-parabolic equation with nonstandard growth conditions. Appl Anal, 2022, 101(13): 4701-4720 | | [18] | Tuan N H, Au V V, Xu R Z. Semilinear Caputo time-fractional pseudo-parabolic equations. Commun Pure Appl Anal, 2021, 20(2): 583-621 | | [19] | Wang X C, Xu R Z. Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation. Adv Nonlinear Anal, 2021, 10(1): 261-288 | | [20] | Xu H Y. Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials. Commun Anal Mech, 2023, 15(2): 132-161 | | [21] | Xu R Z, Lian W, Niu Y. Global well-posedness of coupled parabolic systems. Sci China Math, 2020, 63(2): 321-356 | | [22] | Xu R Z, Su J. Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J Funct Anal, 2013, 264(12): 2732-2763 |
|