| [1] | Bao X, Huang W H. Traveling curved front of bistable reaction-diffusion equations with delay. Electron J Differential Equations, 2015, 2015(254): 1-17 |
| [2] | Bao X, Liu J. Pyramidal traveling fronts in a nonlocal delayed diffusion equation. J Math Anal Appl, 2018, 463(1): 294-313 |
| [3] | Bao X, Wang Z C. Pyramidal traveling front of bistable reaction-diffusion equations with delay. Ann of Diff Eqs, 2014, 30: 127-136 |
| [4] | Gourley S A, So J H W, Wu J H. Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics. J Math Sci, 2004, 124: 5119-5153 |
| [5] | Hamel F, Monneau R, Roquejoffre J M. Asymptotic properties and classification of bistable fronts with Lipschitz level sets. Discrete Contin Dyn Syst, 2006, 14(1): 75-92 |
| [6] | Kurokawa Y, Taniguchi M. Multi-dimensional pyramidal travelling fronts in the Allen-Cahn equations. Proc Roy Soc Edinburgh Sect A, 2011, 141(5): 1031-1054 |
| [7] | Ma S, Wu J. Existence uniqueness and asymptotic stability of traveling wavefronts in a non-local delayed diffusion equation. J Dynam Differential Equations, 2007, 19: 391-436 |
| [8] | Ninomiya H, Taniguchi M. Existence and global stability of traveling curved fronts in the Allen-Cahn equations. J Differential Equations, 2005, 213(1): 204-233 |
| [9] | Ninomiya H, Taniguchi M. Global stability of traveling curved fronts in the Allen-Cahn equations. Discrete Contin Dyn Syst, 2006, 15(3): 819-832 |
| [10] | Sheng W J. Time periodic traveling curved fronts of bistable reaction-diffusion equations in $\Bbb{R}^{N}$. Applied Mathematics Letters, 2016, 54: 22-30 |
| [11] | Sheng W J. Time periodic traveling curved fronts of bistable reaction-diffusion equations in $\Bbb{R}^{3}$. Annali di Matematica Pura ed Applicata, 2017, 196: 617-639 |
| [12] | Sheng W J, Li W T, Wang Z C. Multidimensional stability of V-shaped traveling fronts in the Allen-Cahn equation. Sci China Math, 2013, 56: 1969-1982 |
| [13] | Taniguchi M. An (N-1)-dimensional convex compact set gives an N-dimensional traveling front in the Allen-Cahn equation. SIAM J Math Anal, 2015, 47(1): 455-476 |
| [14] | Taniguchi M. Convex compact sets in $\Bbb{R}^{N-1}$ give traveling fronts of cooperation-diffusion system in $\Bbb{R}^{N}$. J Differential Equations, 2016, 260(5): 4301-4338 |
| [15] | Taniguchi M. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete Contin Dyn Syst, 2012, 32: 1011-1046 |
| [16] | Taniguchi M. The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations. J Differential Equations, 2009, 246(5): 2103-2130 |
| [17] | Taniguchi M. Traveling fronts of pyramidal shapes in the Allen-Cahn equations. SIAM J Math Anal, 2007, 39(1): 319-344 |
| [18] | Wang Z C. Cylindrically symmetric traveling fronts in periodic reaction-diffusion equations with bistable nonlinearity. Proc Roy Soc Edinburgh Sect A, 2015, 145(5): 1053-1090 |
| [19] | Wang Z C. Traveling curved fronts in monotone bistable systems. Discrete Contin Dyn Syst, 2012, 32(6): 2339-2374 |
| [20] | Wang Z C, Li W T, Ruan S. Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity. Trans Amer Math Soc, 2009, 361(4): 2047-2084 |
| [21] | Wang Z C, Li W T, Ruan S. Existence uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems. Sci China Math, 2016, 59: 1869-1908 |
| [22] | Wang Z C, Wu J. Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity. J Differential Equations, 2011, 250(7): 3196-3229 |