| [1] | Autuori G, Fiscella A, Pucci P. Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal, 2015, 125: 699-714 | | [2] | Bellazzini J, Jeanjean L, Luo T J. Existence and instability of standing waves with prescribed norm for a class of Schr?dinger-Possion equations. Proc Lond Math Soc, 2013, 107(3): 303-339 | | [3] | Berestycki H, Lions P L. Nonlinear scalar field equations I. Existence of a ground state. Arch Ration Mech Anal, 1983, 82(4): 313-345 | | [4] | Caponi M, Pucci P. Existence theorems for entire solutions of stationary Kirchhoff fractional $p$-Laplacian equations. Ann Mat Pur Appl, 2016, 195(6): 2099-2129 | | [5] | Fan X L, Zhao Y Z, Zhao D. Compact imbedding theorems with symmetry of Strauss-Lions type for the space $W^{1,p(x)}(\Omega)$. J Math Analysis Appl, 2001, 255(1): 333-348 | | [6] | Frank R L, Lenzmann E, Silvestre L. Uniqueness of radial solutions for the fractional Laplacian. Commun Pure Appl Math, 2015, 69(9): 1671-1726 | | [7] | Frank R L, Seiringer R. Non-linear ground state representations and sharp Hardy inequalities. J Fun Anal, 2008, 255(12): 3407-3430 | | [8] | 古龙江, 孙志禹, 曾小雨. 一类约束变分问题极小元的存在性及其集中行为. 数学物理学报, 2017, 37A(3): 510-518 | | [8] | Gu L J, Sun Z Y, Zeng X Y. The existence of minimizers for a class of constrained variational problem with its concentration behavior. Acta Math Sci, 2017, 37A(3): 510-518 | | [9] | 郭合林, 王云波. 关于一个约束变分问题的注记. 数学物理学报, 2017, 37A(6): 1125-1128 | | [9] | Guo H L, Wang Y B. A remark on a constrained variational problem. Acta Math Sci, 2017, 37A(6): 1125-1128 | | [10] | Guo H L, Zhang Y M, Zhou H S. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Comm Pure Appl Anal, 2018, 17: 1875-1897 | | [11] | He Q H, Lv Z Y, Zhang Y M, et al. Existence and blow up behavior of positive normalized solution to the Kirchhoff equation with general nonlinearities: Mass super-critical case. J Differ Equ, 2023, 356: 375-406 | | [12] | He X M, Zou W M. Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^3$. J Differ Equ, 2012, 2: 1813-1834 | | [13] | He Y, Li G B, Peng S J. Concentrating bound states for Kirchhoff type problems in $\mathbb{R}^3$ involving critical Sobolev exponents. Adv Nonlinear Stud, 2014, 14: 483-510 | | [14] | Huang X M, Zhang Y M. Existence and uniqueness of minimizers for $L^2$ constrained problems related to fractional Kirchhoff equation. Math Methods Appl Sci, 2020, 43(15): 8763-8775 | | [15] | Jeanjean L. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal, 1997, 28(10): 1633-1659 | | [16] | Jeanjean L, Luo T J. Sharp nonexistence results of prescribed $L^2$-norm solutions for some class of Schr?dinger-Possion and qusi-linear equations. Z Angew Math Phys, 2013, 64(4): 937-954 | | [17] | Kirchhoff G. Mechanik. Leipzig: Teubner, 1883 | | [18] | Li G B, Niu Y H. The existence and local uniqueness of multi-peak positive solutions to a class of Kirchhoff equation. Acta Math Sci, 2020, 40B(1): 90-112 | | [19] | Li G B, Yan S S. Eigenvalue problems for quasilinear elliptic equations on $\mathbb{R}^N$. Commu Partial Differ Equ, 1989, 14(8/9): 1291-1314 | | [20] | 李容星, 王文清, 曾小雨. 带椭球势阱的 Kirchhoff 型方程的变分问题. 数学物理学报, 2019, 39A(6): 1323-1333 | | [20] | Li R X, Wang W Q, Zeng X Y. A constrained variational problem of Kirchhoff type equation with ellipsoid-shaped potential. Acta Math Sci, 2019, 39A(6): 1323-1333 | | [21] | Liu Z. Multiple normalized solutions for Choquard equation involving Kirchhoff type perturbation. Top Meth Nonlinear Ana, 2019, 54(1): 297-319 | | [22] | 柳志德, 王征平. 非线性 Kirchhoff 型椭圆方程的最低能量解. 数学物理学报, 2019, 39A(2): 264-276 | | [22] | Liu Z D, Wang Z P. Least energy solution for nonlinear Kirchhoff type elliptic equation. Acta Math Sci, 2019, 39A(2): 264-276 | | [23] | Liu Z S, Squassina M, Zhang J J. Ground states for fractional Kirchhoff equaitons with critical nonlinearity in low dimension. Nonlinear Differ Equ Appl, 2017, 24: Article 50 | | [24] | Mao A M, Chang H J. Kirchhoff type problems in $\mathbb{R}^N$ with radial potentials and locally Lipschitz functional. Applied Math Letters, 2016, 62: 49-54 | | [25] | Nezza E D, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bulletin des Sciences Mathématiques, 2012, 136(5): 521-573 | | [26] | Pucci P, Saldi S. Critical stationary Kirchhoff equations in $\mathbb{R}^N$ involving nonlocal operators. Rev Mat Iberoam, 2016, 32(1): 1-22 | | [27] | Pucci P, Xiang M Q, Zhang B L. Multiple solutions for nonhomogeneous Schr?dinger-Kirchhoff equations involving the fractional $p$-Laplacian in $\mathbb{R}^N$. Calc Var Partial Differ Equ, 2015, 54: 2785-2806 | | [28] | Wang Z Z, Zeng X Y, Zhang Y M. Multi-peak solutions of Kirchhoff equations involving subcritical or critical Sobolev exponents. Math Meth Applied Sci, 2020, 43(8): 5151-5161 | | [29] | 许诗敏, 王春花. Kirchhoff 方程单峰解的局部唯一性. 数学物理学报, 2020, 40A(2): 432-440 | | [29] | Xu S M, Wang C H. Local uniqueness of a single peak solution of a subcritical Kirchhoff problem in $\mathbb{R}^3$. Acta Math Sci, 2020, 40A(2): 432-440 | | [30] | Ye H Y. The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations. Math Meth Applied Sci, 2015, 38(13): 2663-2679 | | [31] | Zeng X Y, Zhang Y M. Existence and uniqueness of normalized solutions for the Kirchhoff equation. Applied Math Letters, 2017, 74: 52-59 |
|