| [1] | Arango J, Gómez A. Diffeomorphisms as time one maps. Aequationes Math, 2002, 64: 304-314 |
| [2] | Arcet B, Giné J, Romanovski V. Linearizability of planar polynomial Hamiltonian systems. Nonlinear Anal-Real, 2022, 63: Article 103422 |
| [3] | Arnold V I, Yu S I. Ordinary Differential Equations. Berlin: Springer-Verlag, 1988 |
| [4] | Ashkenazi M, Chow S. Normal forms near critical points for differential equations and maps. IEEE Trans Circuits Systems, 1988, 35: 850-862 |
| [5] | Becker T, Weispfenning V. Gr?bner Bases:A Computational Approach to Commutative Algebra. New York: Springer, 1993 |
| [6] | Belitskii G R. Equivalence and normal forms of germs of smooth mappings. Russ Math Surv, 1978, 33: 107-177 |
| [7] | Bronstein I U, Kopanskii A Y. Smooth Invariant Manifolds and Normal Forms. Singapore: World Scientific, 1994 |
| [8] | Buchberger B. Ein Algorithmus Zum Auffinden Der Basiselemente Des Restklassenringes Nach Einem Nulldimensional Polynomideal. Austria: Universit?t Innsbruck, 1965 |
| [9] | Chen G. Further reduction of normal forms for vector fields. Numerical Algorithms, 2001, 27: 1-33 |
| [10] | Chen G, Dora J. Further reductions of normal forms for dynamical systems. J Differ Equ, 2000, 166: 79-106 |
| [11] | Chen G, Dora J. Normal forms for differentiable maps near a fixed point. Numerical Algorithms, 1999, 22: 213-230 |
| [12] | Chen G, Dora J. An algorithm for computing a new normal form for dynamical systems. J Symbolic Computation, 2000, 29: 393-418 |
| [13] | Chen X, Shi Y, Zhang W. Planar quadratic degree-preserving maps and their iteration. Result Math, 2009, 55: 39-63 |
| [14] | Chen G, Wang D, Yang J. Unique normal forms for Hopf-zero vector fields. C R Acad Sci Paris, 2003, 336: 345-348 |
| [15] | Cuong L, Doan T, Siegmund S. A sternberg theorem for nonautonomous differential equations. J Dyn Diff Equ, 2019, 31: 1279-1299 |
| [16] | Gelfand M, Kapranov M M, Zelevinsky A V. Discriminants, Resultants and Multidimensional Determinant. Boston: Birkh?user, 1994 |
| [17] | Gramchev T, Walcher S. Normal forms of maps: formal and algebraic aspects. Acta Appl Math, 2005, 87: 123-146 |
| [18] | Guo L, Ren Z. Polynomial normal forms for some germs of nonstrongly 1-resonant diffeomorphisms. Int J Bifurcation and Chaos, 2015, 25: Article 1550174 |
| [19] | Han M. Conditions for a diffeomorphism to be embedded in a $C^r$ flow. Acta Math Sinica, 1988, 4: 111-123 |
| [20] | Han Z, Zhang Z, Zheng Y. New normal for nonlinear system (II)-controllable form. Acta Math Sci, 1993, 13B(2): 139-146 |
| [21] | Ichikawa F. Finitely determined singularities of formal vector fields. Invent Math, 1982, 66: 199-214 |
| [22] | Katok A, Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems. New York: Cambridge University Press, 1995 |
| [23] | Kuczma M. Functional Equations in a Single Variable. Warszawa: Polish Scientific Publishers, 1968 |
| [24] | Kuczma M, Choczewski B, Ger R. Iterative Functional Equations. Cambridge: Cambridge University Press, 1990 |
| [25] | Lam P F. Embedding a differentiable homeomorphism in a flow subject to a regularity condition on the derivatives of the positive transition homeomorphisms. J Differ Equ, 1978, 30: 31-40 |
| [26] | Li J, Kou L, Wang D, Zhang W. Unique normal form and the associated coefficients for a class of three-dimensional nilpotent vector fields. Int J Bifurcation and Chaos, 2017, 27(14): 1750224 |
| [27] | 李伟固. 正规形理论及其应用. 北京: 科学出版社, 2000 |
| [27] | Li W G. Normal Form Theory and Its Application. Beijing: Science Press, 2000 |
| [28] | Li W, Llibre J, Wu H. Polynomial and linearized normal forms for almost periodic differential systems. Discrete and Continuous Dynamical Systems, 2015, 36(1): 345-360 |
| [29] | Liu L, Tang Y, Zhang W. Versal unfolding of homogeneous cubic degenerate centers in strong monodromic family. J Differ Equ, 2021, 283: 136-162 |
| [30] | Rayskin V. H?lder linearization. J Differ Equ, 1998, 147: 271-284 |
| [31] | Ren Z, Xia L, Yang J. On classification of the Poincaré type maps on $\mathbb{R}^3$. Bull Sci Math, 2015, 139(5): 582-598 |
| [32] | Ren Z, Yang J, Yu F. On conjugating equivalence of 0-resonant diffeomorphisms on $\mathbb{R}^3$. Int J Bifurcation and Chaos, 2013, 23(6): Article 1350100 |
| [33] | Ren Z, Yan S, Yang J. Finite determinacy and polynomial normal forms for diffeomorphisms near a strongly 1-resonant fixed point. J Math Anal Appl, 2014, 413(1): 476-481 |
| [34] | Rodrigues H M, Sola-Morales J. Linearization of class $C^1$ for contractions on Banach spaces. J Differ Equ, 2004, 201: 351-382 |
| [35] | Romanovski V, Shafer D. The Center and Cyclicity Problems:A Computational Algebra Approach. Boston: Birkh?user, 2009 |
| [36] | Strien S V. Smooth linearization of hyperbolic fixed points without resonance conditions. J Differ Equ, 1990, 85(1): 66-90 |
| [37] | Takens F. Singularities of vector fields. Publ Math de línstit des Hautes Etudes Sci, 1974, 43: 47-100 |
| [38] | Takens F. Normal forms for certain singularities of vector fields. Ann Inst Fourier, 1973, 23(2): 163-195 |
| [39] | Turqui A, Dali D. Normal forms of planar polynomial differential systems. Qual Theory Dyn Syst, 2019, 18: 11-33 |
| [40] | Yang J. Polynomial normal forms for vector fields on $\mathbb{R}^3$. Duke Math J, 2001, 106(1): 1-18 |
| [41] | Yu Z, Yang L, Zhang W. Discussion on polynomials having polynomial iterative roots. J Symbolic Comput, 2012, 47(10): 1154-1162 |