| [1] | Birnbaum Z, Orlicz W. über die verallgemeinerung des begriffes der zueinander konjugierten potenzen. Studia Math, 1931, 3(1): 1-67 | | [2] | Orlicz W. über eine gewisse Klasse von R?umen vom Typus B. Bull Int Acad Pol Ser A, 1932, 8(9): 207-220 | | [3] | Musielak J. Orlicz Spaces and Modular Spaces. Berlin:Springer, 2000 | | [4] | Yang D C, Yuan W, Zhuo C Q. Musielak-Orlicz Besov-type and Triebel-Lizorkin-type spaces. Rev Mat Complut, 2014, 27(1): 93-157 | | [5] | Liang Y Y, Yang D C, Jiang R J. Weak Musielak-Orlicz Hardy spaces and applications. Math Nachr, 2016, 289(5/6): 634-677 | | [6] | Chlebicka I, Gwiazda P, ?wierczewska-Gwiazda A, et al. Partial Differential Equations in anisotropic Musielak-Orlicz spaces. New York: Springer, 2021 | | [7] | Grafakos L, He D Q. Weak Hardy spaces// Li J, Li X, Lu G. Some Topics in Harmonic Analysis and Applications. Beijing: Higher Education Press, 2016: 177-202 | | [8] | Li W C, Xu J S. Equivalent quasi-norms and atomic decomposition of weak Triebel-Lizorkin spaces. Czech Math J, 2017, 67: 497-513 | | [9] | Diening L, H?st? P, Roudenko S. Function spaces of variable smoothness and integrability. J Funct Anal, 2009, 256(6): 1731-1768 | | [10] | Almeida A, H?st? P. Besov spaces with variable smoothness and integrability. J Funct Anal, 2010, 258: 1628-1655 | | [11] | Li W C, Xu J S. Weak Triebel-Lizorkin spaces with variable integrability, summability and smoothness. Publ Res Inst Math Sci, 2019, 55(2): 259-282 | | [12] | Yang D C, Yang S B. Local Hardy spaces of Musielak-Orlicz type and their applications. Sci China Math, 2012, 55: 1677-1720 | | [13] | Ky L D. New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators. Integral Equations Oper Theory, 2014, 78: 115-150 | | [14] | Yang D C, Liang Y Y, Ky L D. Real-Variable Theory of Musielak-Orlicz Hardy Spaces. Cham: Springer, 2017 | | [15] | Peetre J. On spaces of Triebel-Lizorkin type. Ark Mat, 1975, 13: 123-130 | | [16] | Frazier M, Jawerth B. A discrete transform and decompositions of distribution spaces. J Funct Anal, 1990, 93(1): 34-170 | | [17] | Frazier M, Jawerth B. Decomposition of Besov spaces. Indiana Univ Math J, 1985, 34(4): 777-799 | | [18] | Frazier M, Jawerth B, Weiss G. Littlewood-Paley Theory and the Study of Function Spaces. Providence: Amer Math Soc, 1991 | | [19] | Rychkov V S. On a theorem of Bui, Paluszynski, and Taibleson. Proc Steklov Inst Math, 1999, 227: 280-292 | | [20] | Guo P F, Wang S R, Xu J S. Continuous characterizations of weighted Besov spaces of variable smoothness and integrability. Filomat, 2023, 37(29): 9913-9930 | | [21] | Kempka H. 2-Microlocal Besov and Triebel-Lizorkin spaces of variable integrability. Rev Mat Complut, 2009, 22(1): 227-251 | | [22] | Yuan W, Sickel W F, Yang D C. Morrey and Campanato Meet Besov, Lizorkin and Triebel. Berlin:Springer, 2010 |
|