[1] |
Mukhtarov O Sh, Kadakal M. Some spectral properties of one Sturm-Liouville type problem with discontinuous weight. Sib Math J, 2005, 46(4): 681-694
|
[2] |
Akdoğan Z, Demirci M, Mukhtarov O Sh. Green function of discontinuous boundary value problem with transmission conditions. Math Models Methods Appl Sci, 2007, 30(14): 1719-1738
|
[3] |
李昆, 郑召文. 一类具有转移条件的 Sturm-Liouville 方程的谱性质. 数学物理学报, 2015, 35A(5): 910-926
|
|
Li K, Zheng Z W. Spectral properties for Sturm-Liouville equations with transmission conditions. Acta Math Sci, 2015, 35A(5): 910-926
|
[4] |
Zhang X Y, Sun J. Green function of fourth-order differential operator with eigenparameter-dependent boundary and transmission conditions. Acta Math Appl Sin, 2017, 33(2): 311-326
|
[5] |
Cai J M, Zheng Z W, Li K. A class of singular Sturm-Liouville problems with discontinuity and an eigenparameter-dependent boundary condition. Mathematics, 2022, 10( 23): 4430
|
[6] |
Ozkan A S, Keskin B. Spectral problems for Sturm-Liouville operator with boundary and jump conditions linearly dependent on the eigenparameter. Inverse Probl Sci Eng, 2012, 20(6): 799-808
|
[7] |
Manafov M D. Inverse spectral problems for energy-dependent Sturm-Liouville equations with finitely many point $\delta$-interactions. Electron J Differ Equ Conf, 2016, 2016(11): 1-12
|
[8] |
Liu Y X, Shi G L, Yan J. An inverse problem for non-selfadjoint Sturm-Liouville operator with discontinuity conditions inside a finite interval. Inverse Probl Sci Eng, 2019, 27(3): 407-421
|
[9] |
郑召文, 李昆, 支运芳. 边界条件含有谱参数的非自伴不连续 Sturm-Liouville 算子的逆谱问题. 中国科学: 数学, 2024, 54(7): 989-1008
|
|
Zheng Z W, Li K, Zhi Y F. Inverse spectral problems of the non-selfadjoint discontinuous Sturm-Liouville operator with boundary conditions dependent on spectral parameters. Sci China Math, 2024, 54(7): 989-1008
|
[10] |
Glazman I M. An analogue of the extension theory of Hermitian operators and a non-symmetric one-dimensional boundary problem on a half-axis. Dokl Akad Nauk SSSR, 1957, 115(2): 214-216
|
[11] |
Galindo A. On the existence of $J$-selfadjoint extensions of $J$-symmetric operators with adjoint. Comm Pure Appl Math, 1963, 15(4): 423-425
|
[12] |
Zhikhar N A. The theory of extensions of $J$-symmetric operators. Ukrain Mat Zh, 1959, 11: 352-364
|
[13] |
Knowles I. On the boundary conditions characterizing $J$-selfadjoint extensions of $J$-symmetric operators. J Differ Equ, 1981, 40(2): 193-216
|
[14] |
Race D. The theory of $J$-selfadjoint extensions of $J$-symmetric operators. J Differ Equ, 1985, 57(2): 258-274
|
[15] |
Shang Z J. On $J$-selfadjoint extensions of $J$-symmetric ordinary differential operators. J Differ Equ, 1988, 73(1): 153-177
|
[16] |
王爱平, 孙炯. 具有内部奇异点的 $J$-对称算子的 $J$-自共轭延拓. 南京理工大学学报 (自然科学版), 2007, 31(6): 673-678
|
|
Wang A P, Sun J. $J$-self-adjoint extensions of $J$-symmetric operators with interior singular points. Journal of Nanjing University of Science and Technology, 2007, 31(6): 673-678
|
[17] |
Bao Q L, Hao X L, Sun J. Characterization of self-adjoint domains for two-interval even order singular $C$-symmetric differential operators in direct sum spaces. Discrete Dyn Nat Soc, 2019, 2019(1): 1-12
|
[18] |
Li J, Xu M Z. $J$-selfadjointness of a class of high-order differential operators with transmission conditions. Front Math, 2023, 17(6): 1025-1035
|
[19] |
王忠, 傅守忠. 线性算子谱理论及其应用. 北京: 科学出版社, 2013 Wang Z, Fu S Z. Spectral Theory of Linear Operators and Its Applications. Beijing: Science Press, 2013
|
[20] |
Zettl A. Sturm-Liouville Theory. New York: American Mathematical Society, 2005
|
[21] |
刘景麟. 常微分算子谱论. 北京: 科学出版社, 2009
|
|
Liu J L. Ordinary Differential Operator Spectrum Theory. Beijing: Science Press, 2009
|