[1] |
Kuramoto Y. Instability and turbulence of wavefronts in reaction-diffusion systems. Prog Theor Phys, 1980, 63(6): 1885-1903
|
[2] |
Sivashinsky G. Nonlinear analysis of hyrodynamic instability in laminar flames. Acta Astronaut, 1977, 4(11/12): 1117-1206
|
[3] |
Duan J, Ervin V J. On the stochastic Kuramoto-Sivashinsky equation. Nonlinear Anal, 2001, 44: 205-216
|
[4] |
Rose G A P, Suvinthra M, Balachandran K. Large deviations for stochastic Kuramoto-Sivashinsky equation with multiplicative noise. Nonlinear Anal: Model and control, 2021, 26(4): 642-660
|
[5] |
Wang G, Wang X, Wang Y. Long time behavior for nonlocal stochastic Kuramoto-Sivashinsky equations. Stat Probabil Lett, 2014, 87: 54-60
|
[6] |
Wang G, Wang X, Xu G. Long time stability of nonlocal stochastic Kuramoto-Sivashinsky equations with jump noises. Stat Probabil Lett, 2017, 127: 23-32
|
[7] |
Wu W, Cui S, Duan J. Global well-posedness of the stochastic generalized Kuramoto-Sivashinsky equation with multiplicative noise. Acta Math Appl Sin-E, 2018, 34: 566-584
doi: 10.1007/s10255-018-0769-3
|
[8] |
Yang D. Random attractors for the stochastic Kuramoto-Sivashinsky equation. Stoch Anal Appl, 2006, 24: 1285-1303
|
[9] |
Tadmor E. The well-posedness of the Kuramoto-Sivashinsky equation. SIAM J Math Anal, 1986, 17: 884-893
|
[10] |
Nickel J. Travelling wave solutions to the Kuramoto-Sivashinsky equation. Chaos Soliton Fract, 2007, 33: 1376-1382
|
[11] |
Zayed E M E, Nofal T A, Gepreel K A. The travelling wave solutions for non-linear initial-value problems using the homotopy perturbation method. Appl Anal, 2009, 88: 617-634
|
[12] |
Ge J H, Hua C C, Feng Z S. A method for constructing traveling wave solutions to nonlinear evolution equations. Acta Appl Math, 2012, 118: 185-201
|
[13] |
Barker B, Johnson M A, Noble P, Rodrigues M, Zumbrun K. Stability of periodic Kuramoto-Sivashinsky waves. Appl Math Lett, 2012, 25: 842-829
|
[14] |
Hooper A P, Grimshaw R. Travelling wave solutions of the Kuramoto-Sivashinsky equation. Wave Motion, 1988, 5: 899-919
|
[15] |
Zumbrun K. Instantaneous shock location and one-dimensional nonlinear stability of viscous shock waves. Q Appl Math, 2011, 69: 177-202
|
[16] |
周永辉. 一类具有时滞的非局部反应扩散方程非单调临界行波解的全局稳定性. 数学物理学报, 2020, 40A(4): 983—992
|
|
Zhou Y H. Global stability of the nonmonotone critical traveling waves for reaction diffusion equations. Acta Math Sci, 2020, 40A(4): 983-992
|
[17] |
Shargatov V A, Chugainova A P, Kolomiytsev G V. Global stability of traveling wave solutions of generalized Korteveg-de Vries-Burgers equation with non-constant dissipation parameter. J Comput Appl Math, 2022, 412: 114354
|
[18] |
Cornwell P, Jones C K R T. On the existence and stability of fast traveling waves in a doubly diffusive FitzHugh-Nagumo system. SIAM J Appl Dyn Syst, 2018, 17(1): 754-787
|
[19] |
Lang E. A multiscale analysis of traveling waves in stochastic neural fields. SIAM J Appl Dyn Syst, 2016, 15: 1581-1614
|
[20] |
Hamster C H S, Hupkes H J. Stability of traveling waves for reaction-diffusion equations with multiplicative noise. SIAM J Appl Dyn Syst, 2019, 18: 205-278
doi: 10.1137/17M1159518
|
[21] |
Hamster C H S, Hupkes H J. Traveling waves for reaction-diffusion equations forced by translation invariant noise. Physica D, 2020, 401: 132233
|
[22] |
Lorenzi L, Lunardi A, Metafune G, Pallara D. Analytic Semigroups and Reaction-Diffusion Problems. Internet Seminar, 2005
|
[23] |
Howard P, Zumbrun K. Stability of undercompressive shock profiles. J Differ Equations, 2006, 225: 308-360
|
[24] |
Yosida K. Functional Analysis. Berlin:Springer, 1980
|
[25] |
Temam R, Wang X M. Estimates on the lowest dimension of inertial manifolds for the Kuramoto-Sivashinsky equation in the general case. Differ Integral Equ, 1994, 7: 1095-1108
|