[1] |
Global Tuberculosis report 2023. Geneva: World Health Organization; 2023. Licence:CC BY-NC-SA 3.O IGO
|
[2] |
Mao K X, Zhen C X, Hong Yan L U, et al. Protective eff ect of vaccination of Bacille Calmette-Gnerin on children. Chin J Contemp Pediatr, 2003, 5(4): 325-327
|
[3] |
Abubakar I, Pimpin L, et al. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guerin vaccination against tuberculosis. Health Technol Assess, 2013, 17(37): 1-372
doi: 10.3310/hta17370
pmid: 24021245
|
[4] |
徐瑞, 周凯娟, 白宁. 一类基于游离病毒感染和细胞-细胞传播的宿主体内 HIV-1 感染动力学模型. 数学物理学报, 2024, 44A(3): 771-782
|
|
Xu R, Zhou K J, Bai N. A with-in host HIV-1 infection dynamics model based on virus-to-cell infection and cell-to-cell transmission. Acta Math Sci, 2024, 44A(3): 771-782
|
[5] |
杨俊元, 张晨琳, 杨丽. 年龄结构流感模型综合控制策略研究. 数学物理学报, 2024, 44A(3): 804-814
|
|
Yang J Y, Zhang C L, Yang L. Study on comprehensive control strategies of an age structured influenza model. Acta Math Sci, 44A (3): 804-814
|
[6] |
Liu J L, Zhang T L. Global stability for a tuberculosis model. Math Comput Model, 2011, 54: 836-845
|
[7] |
Li Y, Liu X N, Yuan Y Y, et al. Global analysis of tuberculosis dynamical model and optimal control strategies based on case data in the United States. Appl Math Comput, 2022, 422: 126983
|
[8] |
Yang Y L, Tang S Y, Ren X H, et al. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete Contin Dyn Syst Ser B, 2017, 21(3): 1009-1022
|
[9] |
Gao D P, Huang N J. A note on global stability for a tuberculosis model. Appl Math Lett, 2017, 73: 163-168
|
[10] |
Liu S Y, Bi Y J, Liu Y W. Modeling and dynamic analysis of tuberculosis in mainland China from 1998 to 2017: the effect of DOTS strategy and further control. Theor Biol Med Model, 2020, 17(6): 1-10
|
[11] |
Gao D P, Huang N J. Optimal control analysis of a tuberculosis model. Appl Math Model, 2018, 58: 47-64
|
[12] |
Egonmwan A O, Okuonghae D. Mathematical analysis of a tuberculosis model with imperfect vaccine. Int J Biomath, 2019, 12(7): 1950073
|
[13] |
Bhih A E, Laaroussi A E A, Ghazzali R, et al. An optimal chemoprophylaxis and treatment control for a spatiotemporal tuberculosis model. Commun Math Biol Neurosci, 2021, 2021: Article 40
|
[14] |
Wang Z P, Xu R. Stability and traveling waves of an epidemic model with relapse and spatial diffusion. J Appl Anal Comput, 2014, 4(3): 307-322
|
[15] |
Zhang R, Liu L L, Feng X M, et al. Existence of traveling wave solutions for a diffusive tuberculosis model with fast and slow progression. Appl Math Lett, 2021, 112: 106848
|
[16] |
Lenhart S, Workman J T. Optimal Control Applied to Biological Models. New York: Chapman & Hall/CRC, 2007
|