数学物理学报 ›› 2025, Vol. 45 ›› Issue (4): 1086-1099.

• • 上一篇    下一篇

上半空间分数阶 $p$-Laplace 算子相关的抛物方程解的单调性

马晶晶1(),魏娜2,*()   

  1. 1陕西师范大学数学与统计学院 西安 710119
    2中南财经政法大学统计与数学学院 武汉 430073
  • 收稿日期:2024-11-27 修回日期:2025-02-28 出版日期:2025-08-26 发布日期:2025-08-01
  • 通讯作者: *E-mail: weina@zuel.edu.cn
  • 作者简介:E-mail: mjjwnm@126.com
  • 基金资助:
    国家自然科学基金(12071482);陕西省高校青年创新团队, 陕西省数学和物理基础科学研究基金(22JSZ012);中央高校基本科研业务费专项资金(GK202202007);中央高校基本科研业务费专项资金(GK202307001);中央高校基本科研业务费专项资金(GK202402004)

Monotonicity of Solutions for Parabolic Equations Related to Fractional Order $p$-Laplace Operators on the Upper Half Space

Ma Jingjing1(),Wei Na2,*()   

  1. 1School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119
    2School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073
  • Received:2024-11-27 Revised:2025-02-28 Online:2025-08-26 Published:2025-08-01
  • Supported by:
    NSFC(12071482);Youth Innovation Team of Shaanxi Universities, Shaanxi Fundamental Science Research Project for Mathematics and Physics(22JSZ012);Fundamental Research Funds for the Central Universities(GK202202007);Fundamental Research Funds for the Central Universities(GK202307001);Fundamental Research Funds for the Central Universities(GK202402004)

摘要:

该文考虑上半空间分数阶 $p$-Laplace 算子相关的非线性抛物方程

$\begin{cases} \frac{\partial u}{\partial t}(x,t)+(-\triangle)^s_pu(x,t)=f(u(x,t)), &\quad(x,t)\in\mathbb{R}^{n}_+\times(0,\infty),\\ u(x,t)>0, &\quad(x,t)\in\mathbb{R}^{n}_+\times(0,\infty),\\ u(x,t)=0, &\quad(x,t)\notin\mathbb{R}^{n}_+\times(0,\infty).\end{cases}$

首先, 证明有界域和无界域上反对称函数狭窄区域原理和极大值原理; 然后建立反对称函数 Hopf 引理; 最后, 利用移动平面法证明上半空间分数阶 $p$-Laplace 算子相关的抛物方程解的单调性.

关键词: 分数阶 $p$-Laplace 算子, 抛物方程, 单调性, 反对称函数 Hopf 引理, 移动平面法

Abstract:

In this paper, we consider the nonlinear parabolic equation associated with the fractional $p$-Laplace operator on the upper half space

$\begin{cases} \frac{\partial u}{\partial t}(x,t)+(-\triangle)^s_pu(x,t)=f(u(x,t)), &\quad(x,t)\in\mathbb{R}^{n}_+\times(0,\infty),\\ u(x,t)>0, &\quad(x,t)\in\mathbb{R}^{n}_+\times(0,\infty),\\ u(x,t)=0, &\quad(x,t)\notin\mathbb{R}^{n}_+\times(0,\infty). \end{cases}$

First, the narrow region principle and the maximum principle for antisymmetric functions are proved in both bounded and unbounded domains. Then, the Hopf lemma for antisymmetric functions is established. Finally, using the method of moving planes, the monotonicity of solutions to the parabolic equation associated with the fractional $p$-Laplace operator on the upper half space is demonstrated.

Key words: fractional $p$-Laplace operator, parabolic equations, monotonicity, Hopf lemma for antisymmetric functions, moving plane method

中图分类号: 

  • O29