数学物理学报 ›› 2025, Vol. 45 ›› Issue (4): 1128-1143.
收稿日期:
2024-09-11
修回日期:
2025-01-10
出版日期:
2025-08-26
发布日期:
2025-08-01
通讯作者:
*E-mail: 作者简介:
E-mail: 基金资助:
Ni Siyan(),Zou Tianfang(
),Zhao Caidi*(
)
Received:
2024-09-11
Revised:
2025-01-10
Online:
2025-08-26
Published:
2025-08-01
Supported by:
摘要:
该文研究无穷格点上时滞反应扩散方程拉回吸引子与不变测度的存在性. 作者首先证明格点时滞反应扩散方程初值问题解的全局适定性, 且解映射在相应相空间中生成一个连续过程, 然后证明该过程存在拉回吸引子, 并应用该拉回吸引子和广义 Banach 极限构造过程的不变 Borel 概率测度.
中图分类号:
倪思妍, 邹天芳, 赵才地. 格点时滞反应扩散方程的拉回吸引子与不变测度[J]. 数学物理学报, 2025, 45(4): 1128-1143.
Ni Siyan, Zou Tianfang, Zhao Caidi. Pullback Attractors and Invariant Measures for Retarded Lattice Reaction-Diffusion Equations[J]. Acta mathematica scientia,Series A, 2025, 45(4): 1128-1143.
[1] | Evans L C. Partial Differential Equations Providence, RI: American Mathematical Society, 2022 |
[2] | 叶其孝. 反应扩散方程引论. 北京: 科学出版社, 2019 |
Ye Q X. Introduction to Reaction-Diffusion Equations. Beijing: Science Press, 2019 | |
[3] | Wu J. Theory and Applications of Partial Functional Differential Equations. New York: Springer Science and Business Media, 1996 |
[4] | Chate H, Courbage M. Lattice systems. Physica D: Nonlinear Phenomena, 1997, 1.3: 1-612 |
[5] | Keener J P. Propagation and its failure in coupled systems of discrete excitable cells. Journal of Mathematical Chemistry, 1987, 47: 556-572 |
[6] | Winslow R L, Kimball A L, Varghese A, et al. Simulating cardiac sinus and atrial network dynamics on the connection machine. Physica D: Nonlinear Phenomena, 1993, 64: 281-298 |
[7] | Erneux T, Nicolis G. Propagating waves in discrete bistable reaction-diffusion systems. Physica D: Nonlinear Phenomena, 1993, 67: 237-244 |
[8] | Kapral R. Discrete models for chemically reacting systems. Journal of Mathematical Chemistry, 1991, 6: 113-163 |
[9] | Pecora L M, Carroll T L. Synchronization in chaotic systems. Physical Review Letters, 1990, 64: 821 |
[10] |
Fabiny L, Colet P, Roy R, et al. Coherence and phase dynamics of spatially coupled solid-state lasers. Physical Review A, 1993, 47: 4287-4298
pmid: 9909435 |
[11] | Hillert M. A solid-solution model for inhomogeneous systems. Acta Metallurgica, 1961, 9: 525-535 |
[12] | Chow S N, Paret J M, Van Vleck E S. Pattern formation and spatial chaos in spatially discrete evolution equations Random Comput. Random and Computational Dynamics, 1996, 4: 109-178 |
[13] | Abdallah A. Uniform exponential attractor for first order non-autonomous lattice dynamical systems. Journal of Differential Equations, 2011, 2.1: 1489-1504 |
[14] | Bates P, Lu K, Wang B. Attractors of non-autonomous stochastic lattice systems in weighted spaces. Physica D: Nonlinear Phenomena, 2014, 2.9: 32-50 |
[15] | Caraballo T, Morillas F, Valero J. Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearity. Journal of Differential Equations, 2012, 2.3: 667-693 |
[16] | Caraballo T, Morillas F, Valero J. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34: 51-77 |
[17] | Wang X, Lu K, Wang B. Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise. Journal of Dynamics and Differential Equations, 2016, 28: 1309-1355 |
[18] | Zhou S. Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise. Journal of Differential Equations, 2017, 2.3: 2247-2279 |
[19] | Chekroun M, Glatt-Holtz N. Invariant measures for dissipative dynamical systems: abstract results and applications. Communications in Mathematical Physics, 2012, 3.6(3): 723-761 |
[20] | Łukaszewicz G, Robinson J C. Invariant measures for non-autonomous dissipative dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34: 4211-4222 |
[21] | Li X, Shen W, Sun C. Invariant measures for complex-valued dissipative dynamical systems and applications. Discrete and Continuous Dynamical Systems-B, 2017, 22(6): 2427-2446 |
[22] | Moussa G, Cláudia B. Invariant measures for multivalued semigroups. Journal of Mathematical Analysis and Applications, 2017, 4.5(2): 1234-1248 |
[23] | 李永军, 桑燕苗, 赵才地. 一阶格点系统的不变测度与 Liouville 型方程. 数学物理学报, 2020, 40A(2): 328-339 |
Li Y J, Sang Y M, Zhao C D. Invariant measures and Liouville type theorem for first-order lattice systems. Acta Math Sci, 2020, 40A(2): 328-339 | |
[24] | Zhao C, Wang J, Caraballo T. Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes equations. Journal of Differential Equations, 2022, 3.7: 474-494 |
[25] | 邹天芳, 赵才地. 加权空间中一阶格点系统的统计解及其 Kolmogorov 熵. 数学物理学报, 2023, 43A(5): 1559-1574 |
Zhou T F, Zhao C D. Statistical solutions and Kolmogorov entropy for first-order lattice systems in weighted spaces. Acta Math Sci, 2023, 43A(5): 1559-1574 | |
[26] | Zhao C, Zhuang R. Statistical solutions and Liouville theorem for the second order lattice systems with varying coefficients. Journal of Differential Equations, 2023, 3.2: 194-234 |
[27] | 赵才地, 李艳娇, 阳玲, 等. Ladyzhenskaya 流体力学方程组的拉回吸引子与不变测度. 数学学报, 2018, 61: 1-12 |
Zhao C D, Li Y J, Yang L, et al. Pullback attractors and invariant measures for Ladyzhenskaya model. Acta Mathematica Sinica, 2018, 61: 823-834 | |
[28] |
杨虎军, 韩晓玲, 赵才地. 三维热带气候模型轨道统计解的存在性, 退化正则性与极限行为. 数学学报, 2025, 68(2): 325-349
doi: 10.12386/A20230094 |
Yang H J, Han X L, Zhao C D. Existence, degenerate regularity and limit behavior of trajectory statistical solution for the 3D tropical climate model. Acta Mathematica Sinica, 2025, 68(2): 325-349
doi: 10.12386/A20230094 |
|
[29] | Boyer F, Fabrie P. Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. New York: Springer, 2013 |
[30] | Zhao C. Absorbing estimate implies trajectory statistical solutions for nonlinear elliptic equations in half-cylindrical domains. Mathematische Annalen, 2025, 3.1: 1711-1730 |
[31] | Carvalho A, Langa J A, Robinson J C. Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems. New York: Springer, 2013 |
[32] | Caraballo T, Morillas F, Valero J. Attractors for non-autonomous retarded lattice dynamical systems. Nonautonomous Dynamical Systems, 2015, 2: 31-51 |
[33] | Foias C, Manley O, Rosa R, Temam R. Navier-Stokes Equations and Turbulence. Cambridge: Cambridge University Press, 2001 |
[34] | Yang H, Han X, Zhao C. Pullback dynamics and statistical solutions for dissipative non-autonomous Zakharov equations. Journal of Differential Equations, 2024, 3.0: 1-57 |
[1] | 张怡然, 黎定仕. 脉冲分数阶格点系统的不变测度[J]. 数学物理学报, 2024, 44(6): 1563-1576. |
[2] | 邹天芳,赵才地. 加权空间中一阶格点系统的统计解及其 Kolmogorov 熵[J]. 数学物理学报, 2023, 43(5): 1559-1574. |
[3] | 曹洁,黄兰,苏克勤. 带弱阻尼Navier-Stokes方程拉回吸引子的收敛性[J]. 数学物理学报, 2022, 42(4): 1173-1185. |
[4] | 彭小明,郑筱筱,尚亚东. 具有非线性阻尼的Navier-Stokes-Voigt方程的拉回吸引子[J]. 数学物理学报, 2021, 41(2): 357-369. |
[5] | 肖巧懿,李春秋. 离散的三分量可逆Gray-Scott模型的不变Borel概率测度[J]. 数学物理学报, 2021, 41(2): 523-537. |
[6] | 朱凯旋,谢永钦,周峰,邓习军. 带有时滞项的复Ginzburg-Landau方程的拉回吸引子[J]. 数学物理学报, 2020, 40(5): 1341-1353. |
[7] | 李永军,桑燕苗,赵才地. 一阶格点系统的不变测度与Liouville型方程[J]. 数学物理学报, 2020, 40(2): 328-339. |
[8] | 张韧, 张绍义. 一致可数可加马氏链不变测度的存在性[J]. 数学物理学报, 2018, 38(2): 350-357. |
[9] | 汪永海, 秦玉明. 非经典扩散方程的拉回吸引子在H01(Ω)中的上半连续性[J]. 数学物理学报, 2016, 36(5): 946-957. |
[10] | 杨新光, 赵明霞, 侯伟. 带弱耗散的两维非自治不可压Navier-Stokes方程拉回吸引子的上半连续性[J]. 数学物理学报, 2016, 36(4): 722-739. |
[11] | 王小虎, 李树勇. 无界区域上具线性阻尼的二维 Navier-Stokes 方程的拉回吸引子[J]. 数学物理学报, 2009, 29(4): 873-881. |
[12] | 马东魁, 徐志庭. IFS中一个经典遍历性质的一些推广[J]. 数学物理学报, 2005, 25(4): 503-508. |
[13] | 吴群英. Q过程的μ不变测度——含吸收态情形[J]. 数学物理学报, 2004, 24(1): 16-25. |
[14] | 余旌胡, 杨元启. 统计自相似集与随机不变测度[J]. 数学物理学报, 2002, 22(4): 471-476. |
|