数学物理学报 ›› 2025, Vol. 45 ›› Issue (4): 1206-1216.
收稿日期:
2024-08-12
修回日期:
2025-04-14
出版日期:
2025-08-26
发布日期:
2025-08-01
通讯作者:
*E-mail: 作者简介:
E-mail: 基金资助:
Zeng Xiaping(),Lu Wenwen,Pang Guoping,Liang Zhiqing*(
)
Received:
2024-08-12
Revised:
2025-04-14
Online:
2025-08-26
Published:
2025-08-01
Supported by:
摘要:
该文考虑了一类具有季节性切换和脉冲扰动的鱼类单种群模型, 研究季节切换和脉冲扰动对鱼类种群动力学行为的影响. 利用离散动力系统频闪映射理论得到了鱼类单种群系统持久生存和灭绝的充分条件, 结合有理差分方程和不动点理论证明了该系统存在唯一全局吸引的正周期解. 最后, 通过数值模拟来验证结论.
中图分类号:
曾夏萍, 卢文雯, 庞国萍, 梁志清. 具有季节性切换反应及脉冲扰动的鱼类单种群动力学模型[J]. 数学物理学报, 2025, 45(4): 1206-1216.
Zeng Xiaping, Lu Wenwen, Pang Guoping, Liang Zhiqing. Single Population Dynamics Model of Fish with Seasonal Switching and Impulsive Perturbations[J]. Acta mathematica scientia,Series A, 2025, 45(4): 1206-1216.
[1] | 马亚宸, 徐宾铎, 王晶, 等. 渔业信息船数对海洋捕捞产量估计的影响. 中国海洋大学学报 (自然科学版), 2020, 50(S01): 71-77 |
Ma Y C, Xu B Y, Wang J, et al. Effect of number of study fleets on the marine fisheries catch estimate in a fishery-dependent survey. Periodical of Oceanuniversity of China (Natural Science Edition), 2020, 50(S01): 71-77 | |
[2] | 黄振东. 海洋渔业对海洋生态系统的影响及其管理初探. 中国农业信息, 2017, 29(10): 51-52 |
Huang Z D. Preliminary study on the impact and management of marine fisheries on marine ecosystems. China Agricultural Information, 2017, 29(10): 51-52 | |
[3] | 茅克勤, 王鹏, 岳羲和, 等. 海洋渔业综合净效益评估研究. 海洋环境科学, 2023, 42(5): 729-737 |
Mao K Q, Wang P, Yue X H, et al. Study on the evaluation of comprehensive net performance of marine fishery. Marine Environmental Science, 2023, 42(5): 729-737 | |
[4] | Peng R, Zhao X Q. The diffusive logistic model with a free boundary and seasonal succession. Discrete and Continuous Dynamical Systems, 2012, 33(5): 2007-2031 |
[5] | Xing L, Chen Y, Zhang C L, et al. Evaluating impacts of pulse fishing on the effectiveness of seasonal closure. Acta Oceanologica Sinica, 2020, 39: 89-99 |
[6] | Buonomo B, Chitnis N, d'Onofrio A. Seasonality in epidemic models: a literature review. Ricerche di Matematica, 2018, 67: 7-25 |
[7] | Duarte J, Januario C, Martins N, et al. Controlling infectious diseases: the decisive phase effect on a seasonal vaccination strategy. International Journal of Bifurcation and Chaos, 2021, 31(1): 134 |
[8] | 李艳青. 具有季节演替及马尔科夫转换的种群模型研究. 乌鲁木齐: 新疆大学, 2017 |
Li Y Q. The Study of Population Models with Seasonal Succession and Markovian Switching. Urumqi: Xinjiang University, 2017 | |
[9] | Wang M X, Zhang Q Y, Zhao X Q. Traveling waves and spreading properties for a reaction-diffusion competition model with seasonal succession. Nonlinearity, 2022, 35(134): 135-169 |
[10] | Yan R, Sun Q W. Uniqueness and stability of periodic solutions for an interactive wild and Wolbachia-infected male mosquito model. Journal of Biological Dynamics, 2022, 16(1): 254-276 |
[11] | Meng W, Yue Y, Ma M. The minimal wave speed of the Lotka-Volterra competition model with seasonal succession. Discrete and Continuous Dynamical Systems-Series B, 2022, 27(9): 5085-5100 |
[12] | 孙佳杰. 季节变换下害虫综合治理切换模型的数学模拟研究. 大连: 辽宁师范大学, 2023 |
Sun J J. Mathematical Simulation Study of Switching Models with Integrated Pest Management Under Seasonal Change. Dalian: Liaoning Normal University, 2023 | |
[13] | Zhang Z W, Chang L J, Huang Q M, et al. A mosquito population suppression modelwitha saturated Wolbachia release strategy in seasonal succession. Journal of Mathematical Biology, 2023, 86(51): 1-31 |
[14] | Feng X M, Liu Y F, Ruan S G, Yu J S. Periodic dynamics of a single species model with seasonal Michaelis-Menten type harvesting. Journal of Differential Equations, 2023, 3.4: 237-263 |
[15] | Chen Y W, Li W X, Zhang Q M, et al. The bistable wave speed in a reaction-diffusion system with seasonal succession. Journal of Mathematical Analysis and Applications, 2023, 5.8( 2): 126704 |
[16] | Hsu S B, Zhao X Q. A Lotka-Volterra competition model with seasonal succession. J Math Biol, 2012, 64(1): 109-130 |
[17] | Tian Y, Tang S Y. Dynamics of a density-dependent predator-prey biological system with nonlinearimpulsive control. Mathematical Biosciences and Engineering, 2021, 18(6): 7318-7343 |
[18] | Tang S Y, Tian Y, Cheke R A. Dynamic complexity of a predator-prey model for IPM with nonlinear impulsive control incorporating a regulatory factor for predator releases. Mathematical Modelling and Analysis, 2019, 24(1): 134-154 |
[19] |
Yan X X, Zhao Z, Hui Y X, Yang J G. Dynamic analysis of a bacterial resistance model with impulsive state feedback control. Mathematical biosciences and engineering, 2023, 20(12): 20422-20436
doi: 10.3934/mbe.2023903 pmid: 38124559 |
[20] | 梁毅东. 脉冲微分方程在害虫治理模型中的应用. 长春: 长春工业大学, 2024 |
Liang Y D. Application of Impulse Differential Equation in Pest Management Model. Changchun: Changchun University of Technology, 2024 | |
[21] | Fu J B, Chen L S. Modelling and qualitative analysis of water hyacinth ecological system with two state-dependent impulse controls. Complexity, 2018, 20.8: Article 4543976 |
[22] | Huang Y, Shi W, Wei C, et al. A stochastic predator-prey model with Holling II increasingfunction in the predator. Journal of Biological Dynamics, 2021, 15(1): 1-18 |
[23] |
Shi Z Z, Cheng H D, Liu Y, et al. Optimization of an integrated feedback control for a pest management predator-prey model. Mathematical Biosciences and Engineering, 2019, 16( 6): 7963-7981
doi: 10.3934/mbe.2019401 pmid: 31698650 |
[24] | 聂星屹, 焦建军. 具脉冲出生与脉冲收获切换的阶段结构单种群动力学模型. 生物数学学报, 2020, 35(1): 155-159 |
Nei X Y, Jiao J J. A Single population dynamics model with stage structure switching between pulse birth and pulse harvest. Journal of Biomathematics, 2020, 35(1): 155-159 | |
[25] | 王明靖. 具脉冲效应的渔业资源管理动力学模型. 广东蚕业, 2023, 57(10): 35-38 |
Wang M J. Dynamic model of fishery resource management with pulse effect. Guangdong Sericulture, 2023, 57(10): 35-38 | |
[26] | 吕宁. 双脉冲阶段结构的种群系统动力学特性. 山东大学学报(理学版), 2021, 56(12): 100-110 |
Lv Ning. Dynamics of the stage-structured population system with two kinds of pulses. Journal of Shandong University (Natural Science), 2021, 56(12): 100-110 | |
[27] | 刘兰兰. 具两系统切换脉冲效应的生物动力学模型. 贵阳: 贵州财经大学, 2019 |
Liu L L. Biodynamic Model with Two System Switching Pulse Effect. Guiyang: Guizhou University of Finance and Economics, 2019 | |
[28] | Kocic V L, Ladas G. Global Behavior of Nonlinear Difference Equations of Higher Order with Application. London: Spinger-Verlag, 1993 |
[29] |
Zhang L, Teng Z D, Donald L, Ruan S G. Single species models with logistic growth and dissymmetric impulse dispersal. Math Biosci, 2013, 2.1(2): 188-197
doi: 10.1016/j.mbs.2012.11.005 pmid: 23220292 |
[1] | 任琛琛, 杨苏丹. 带有渐近概周期系数的次线性热方程解的存在唯一性[J]. 数学物理学报, 2025, 45(1): 31-43. |
[2] | 娄瑜, 张翼. 推广的导数非线性薛定谔方程的单/双周期背景上的呼吸子和怪波及其碰撞解[J]. 数学物理学报, 2024, 44(6): 1511-1519. |
[3] | 钱玉婷, 周学良, 程志波. 一类奇性 |
[4] | 钱玉婷, 周学良, 程志波. 一类奇性 |
[5] | 尹瑞霞, 王泽东, 张龙. 具有无穷分布时滞和反馈控制的周期阶段结构单种群模型[J]. 数学物理学报, 2024, 44(4): 994-1011. |
[6] | 王梓欢,王超. 一类双质子弱耦合碰撞系统的对称周期解[J]. 数学物理学报, 2023, 43(5): 1427-1439. |
[7] | 单远. 渐近线性Dirac方程的相对Morse指标及其多解性[J]. 数学物理学报, 2023, 43(1): 69-81. |
[8] | 唐宇轩, 周国全. 用Hirota 双线性导数变换求MNLS 方程的Rogue 波解[J]. 数学物理学报, 2023, 43(1): 132-142. |
[9] | 宋慧娟, 黄倩, 王泽佳. 具周期营养供给的血管化肿瘤生长模型的渐近分析[J]. 数学物理学报, 2023, 43(1): 261-273. |
[10] | 王学蕾. 1-维次线性p-Laplacian方程的无穷多周期解[J]. 数学物理学报, 2022, 42(5): 1462-1472. |
[11] | 邓楠,冯美强. 电报方程的正双周期解: 存在性、唯一性、多重性和渐近性[J]. 数学物理学报, 2022, 42(5): 1360-1380. |
[12] | 姚绍文,李文洁,程志波. 三阶非线性微分方程周期解的非退化和存在唯一性[J]. 数学物理学报, 2022, 42(2): 454-462. |
[13] | 兰军. 一类二阶Duffing方程反周期解的存在性和多重性[J]. 数学物理学报, 2022, 42(2): 463-469. |
[14] | 王长有,李楠,蒋涛,杨强. 一类具有时滞及反馈控制的非自治非线性比率依赖食物链模型[J]. 数学物理学报, 2022, 42(1): 245-268. |
[15] | 杨静,柯昌成,魏周超. 一类连续和不连续分段线性系统的周期解研究[J]. 数学物理学报, 2021, 41(4): 1053-1065. |
|