数学物理学报 ›› 2025, Vol. 45 ›› Issue (4): 1229-1244.

• • 上一篇    下一篇

复杂信号的组合去噪方法

王佳兴,杨双全,董怡超*()   

  1. 武汉科技大学理学院 武汉 430065; 冶金工业过程系统科学湖北省重点实验室 武汉 430065
  • 收稿日期:2025-01-16 修回日期:2025-06-12 出版日期:2025-08-26 发布日期:2025-08-01
  • 通讯作者: *E-mail: dongyc@wust.edu.cn
  • 基金资助:
    国家重点研发计划项目(2020YFA0714200)

Combined Denoising Methods for Complex Signals

Wang Jiaxing,Yang Shuangquan,Dong Yichao*()   

  1. School of Science, Wuhan University of Science and Technology, Wuhan 430065; Hubei Key Laboratory of Metallurgical Industrial Process System Science, Wuhan 430065
  • Received:2025-01-16 Revised:2025-06-12 Online:2025-08-26 Published:2025-08-01
  • Supported by:
    National Key Research and Development Program of China(2020YFA0714200)

摘要: 复杂环境中信号的降噪处理对信号的准确提取和分析至关重要. 现有研究多聚焦于单一或组合方法在特定场景中的应用, 难以有效应对复杂信号的非线性和非平稳性问题. 该文基于非平稳性度量, 提出了一种 CEEMDAN 两阶段降噪策略, 通过 NS 指标量化模态分量的非平稳性, 实现高频噪声与低频信号的精准分离; 采用新型对数型阈值函数去除高频噪声, 并结合 SG 滤波法平滑低频信号, 显著提高了降噪效果和信号重构精度. 结果表明, 新方法在不同信噪比和噪声类型下均展现出卓越的模态区分与降噪性能.

关键词: 复杂信号去噪, CEEMDAN, 非平稳性度量 (NS), S-G 滤波, 小波阈值去噪

Abstract:

Noise reduction in complex environments is of paramount importance for the accurate extraction and analysis of signals. Prevailing research predominantly centers on the application of single or combined methods in specific scenarios, but encounters challenges in effectively addressing the nonlinearity and non-stationarity of complex signals. Based on the measurement of non-stationarity, this study proposes a two-stage noise reduction strategy using CEEMDAN. The NS index is used to quantify the non-stationarity of modal components, achieving precise separation of high-frequency noise from low-frequency signals. A novel logarithmic threshold function is adopted to remove high-frequency noise, and the SG filtering method is combined to smooth low-frequency signals, significantly improving the noise reduction effect and signal reconstruction accuracy. The results indicate that the new method demonstrates outstanding modal discrimination and noise reduction performance under different signal-to-noise ratios and noise types.

Key words: complex signal denoising, CEEMDAN, non-stationarity measure (NS), S-G filtering, wavelet threshold denoising

中图分类号: 

  • TN911.7