[1] |
Dobrushin R L. The problem of uniqueness of a Gibbsian random field and the problem of phase transition. Functional Anal Appl, 1968, 2: 302-312
|
[2] |
Meyn S P, Tweedie R L. Markov Chains and Stochastic Stability. London: Springer Verlag, 1992
|
[3] |
Liggett T M. Interacting Particle Systems. New York: Spring-verlag, 1985
|
[4] |
张水利. 一般状态空间跳过程的随机稳定性. 武汉: 湖北大学, 2014
|
|
Zhang S L. Stochastic Stability of Jump Processes in General State Space. Wuhan: Hubei University, 2014
|
[5] |
朱志锋. 一般状态空间连续时间 Markov 过程的常返性. 数学物理学报, 2021, 41A(3): 860-873
|
|
Zhu Z F. Recurrence of continuous time Markov processes in general state space. Acta Math Sci, 2021, 41A(3): 860-873
|
[6] |
Chen M. F. From Markov Chains to Non-Equilibrium Particle Systems. Singapore: World Scientific, 2004
|
[7] |
Ahmed M A, Alkhamis T. M-Simulation-based optimization using simulated an nealing with ranking and selection. Computers Operations Research, 2002, 29(4): 387-402
|
[8] |
朱志锋, 张绍义. 用耦合方法研究马氏链 f-指数遍历. 数学学报, 2019, 62(3): 287-292
|
|
Zhu Z F, Zhang S Y. Study on f-exponential ergodicity of Markov chain by coupling method. Acta Mathematica Sinica, 2019, 62(3): 287-292
|
[9] |
Zhu Z F, Zhang S Y, Tian F J. The convergence of nonhomogeneous markov chains in general state spaces by coupling method. Acta Math Sci, 2021, 41B(5): 1777-1787
|
[10] |
Lindvall T. Lectures on the Coupling Method. New York: Wiley, 1992
|
[11] |
张绍义. 最优可测耦合的存在性与 Markov 过程的遍历性. 中国科学 (A 辑), 1998, 28(11): 999-1008
|
|
Zhang S Y. Existence of the optimal measurable coupling and ergodicity for markov processes. Science in China (Series A), 1998, 28(11): 999-1008
|
[12] |
朱志锋. 一般状态空间 Markov 过程常返性的研究. 数学学报, 2023, 66(4): 791-800
doi: 10.12386/A20220175
|
|
Zhu Z F. Recurrence of Markov processes in general state space. Acta Mathematica Sinica, 2023, 66(4): 791-800
doi: 10.12386/A20220175
|