数学物理学报 ›› 1999, Vol. 19 ›› Issue (5): 537-540.
• 论文 • 上一篇 下一篇
(黔南师专数学系 贵州都匀 558000)
贵州民族学院数学系 |贵州 550025)
出版日期:
发布日期:
(Deptartment of Mathematics Qiannan Teachers College, Guizhou Duyun 558000)
(Deptartment of Mathematics Guizhou Institute for Nationalities, Guiyang 550025)
Online:
Published:
摘要:
Whitney关于偶函数的结果给出了一个变元且在Z2群{±1}下不变的C∞函数芽的典型形式:如果f∈E1且f(-x)=f(x),则存在h∈E1使得f(x)=h(x2).该文将借助Malgrange预备定理和有关的计算,得出Rn在原点且在群{±In}下不变的C∞函数芽的典型形式.
关键词: Malgrange预备定理, Z2不变, 典型形式.
Abstract:
The result of Whitney on even functions gives the canonical form of invariant C∞ function germs under Z2 group {±1} in one variable: If f∈E1 and f(-x)=f(x),then there exists h∈E1 such that f(x)=h(x2).In this paper, by means of Malgrange preparation theorem and the related computation, the authors obtain the canonical from of invariant C∞ function germs under group {±In} in Rn at origin.
Key words: Malgrange preparation theorem, Z2 invariant, canonical form.
中图分类号:
58C27
岑燕斌吴兴玲. Z2不变的C∞函数芽的典型形式[J]. 数学物理学报, 1999, 19(5): 537-540.
Cen Yanbin Wu Xinling. The Canonical Form of Z2 invariant C&infin|Function Germs[J]. Acta mathematica scientia,Series A, 1999, 19(5): 537-540.
推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: http://actams.apm.ac.cn/sxwlxbA/CN/
http://actams.apm.ac.cn/sxwlxbA/CN/Y1999/V19/I5/537
1 Jean Martinet.SingularitiesofSmoothFunctionsand Maps.London MathematicalSocietyLectureNoteSeries58.Cambridge:CambridgeUniversityPress,1982 2 Cen Yanming.An ApplicationofNecessaryandSufficientConditionofL-Eguivalence.JournalofMathematicalResearchandExposition,1989,9(4):547-558 3 MartinGolubitsky,IanStewart,DavidGSchaeffer.SingularitiesandGroupsinBifurcationTheory,VolⅡ.ApplMathSci,69.SpringerVerlag,Reprintedby WorldPublishingCorporation,Beijing,1991
Cited