| 1 | Dinkelbach W . On nonlinear fractional programming. Manag Sci, 1967, 13: 492- 498 | | 2 | Yang X M , Teo K L , Yang X Q . Symmetric duality for a class of nonlinear fractional programming problems. Math Anal Appl, 2002, 271: 7- 15 | | 3 | Yang X M , Yang X Q , Teo K L . Duality and saddle-point type optimality for generalized nonlinear fractional programming. Math Anal Appl, 2004, 289: 100- 109 | | 4 | Lin J Y , Shu R L . Modified Dinkelbach-type algorithm for generalized fractional programs with infinitely many ratios. J Optim Theory Appl, 2015, 126: 323- 343 | | 5 | Bo? R I , Hodrea I B , Wanka G . Farkas-type results for fractional programming problems. Nonlinear Anal, 2007, 67: 1690- 1703 | | 6 | 孙祥凯.约束优化问题的若干对偶以及微分性研究[D].重庆:重庆大学, 2012 | | 6 | Sun X K. Some Duality and Differentiability for Constrained Optimization Problems[D]. Chongqing:Chongqing Univ, 2012 | | 7 | Sun X K , Chai Y . Optimality conditions for DC fractional programming problems. Advan Math, 2014, 43: 895- 904 | | 8 | Combari C , Laghdir M , Thibault L . A note on subdifferentials of convex composite functionals. Arch Math, 1996, 67: 239- 252 | | 9 | Bo? R I , Grad S M , Wanka G . New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces. Nonlinear Anal, 2008, 69: 323- 336 | | 10 | Bo? R I , Grad S M , Wanka G . A new constraint qualification for the formula of the subdifferential of composed convex functions in infinite dimensional spaces. Math Nachr, 2008, 281: 1088- 1107 | | 11 | Bo? R I , Grad S M , Wanka G . Generalized Moreau-Rockafellar results for composed convex functions. Optim, 2009, 58: 917- 933 | | 12 | 方东辉, 王梦丹. 锥复合优化问题的Lagrange对偶. 系统科学与数学, 2017, 37: 203- 211 | | 12 | Fang D H , Wang M D . Study on the Lagrange dualities for composite optimization problems with conical constraints. J Sys Sci Math Scis, 2017, 37: 203- 211 | | 13 | Li G , Zhou Y Y . The stable Farkas lemma for composite convex functions in infinite dimensional spaces. Acta Math Appl Sin, 2015, 31: 677- 692 | | 14 | Fang D H , Gong X . Extended Farkas lemma and strong duality for composite optimization problems with DC functions. Optim, 2017, 66: 179- 196 | | 15 | Zǎlinescu C. Convex Analysis in General Vector Spaces. New Jersey:World Scientific, 2002 | | 16 | Fang D H , Lee G M , Li C , Yao J C . Extended Farkas's lemmas and strong Lagrange dualities for DC infinite programming. J Nonlinear Convex Anal, 2013, 14: 747- 767 | | 17 | Fang D H , Li C , Ng K F . Constraint qualifications for extended Farkas's lemmas and Lagrangian dualities in convex infinite programming. SIAM J Optim, 2009, 20: 1311- 1332 |
|