| 1 | Long R R , Andrushkiw R I , Huang X H . Solitary waves in the Westerlies. J Atmos Sci, 1964, 21: 197- 200 | | 2 | Benney D J . Long nonlinear waves in fluid flows. J Math Phys, 1966, 45: 52- 63 | | 3 | Redekopp L G . On the theory of solitary Rossby waves. J Fluid Meth, 1977, 82: 725- 745 | | 4 | Boyd J P . Equatorial solitary waves. Part Ⅰ:Rossby solitons. J Phys Ocean, 1980, 10 (11): 1699- 1718 | | 5 | Grimshaw R H J . Evolution equations for long, nonlinear internal waves in stratified shear flows. Stud Appl Math, 1981, 65: 159- 188 | | 6 | Yang H W , Yin B S , Yang D I , Xu Z H . Forced solitary Rossby waves under the influence of slowly varying topography with time. Chin Phys B, 2011, 20 (12): 120201 | | 7 | Benney D J . Large amplitude Rossby waves. Stud Appl Math, 1979, 60: 1- 10 | | 8 | Yamagata T . The stability, modulation and long wave resonance of a planetary wave in a rotating, two-layer fluid on a channel beta-plane. J Meteorol Soc Japan, 1980, 58: 160- 171 | | 9 | Bao W , Jaksch D , Markowich P . Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation. J Comput Phys, 2003, 187 (1): 318- 342 | | 10 | Bao W , Cai Y . Mathematical theory and numerical methods for Bose-Einstein condensation Kinet. Relat Mod, 2013, 6: 1- 135 | | 11 | Liang X , Khaliq A , Sheng Q . Exponential time differencing Crank-Nicolson method with a quartic spline approdinger for nonlinear Schr?dinger equations. Appl Math Comput, 2014, 235: 235- 252 | | 12 | Sheng Q , Khaliq A , Al-Said E . Solving the generalized nonlinear Schr?ginger equation via quartic spline approximation. J Comput Phys, 2001, 166 (2): 400- 417 | | 13 | Peng C Q , Ma S C . The existence of nontrivial solutions for a class of asymtotically linear equation. Acta Mathematica Scientia, 2013, 33A (6): 1035- 1044 | | 14 | Xu N , Ma S W . Ground state sulutions for periodic Schr?dinger equation with critical sobolev exponent. Acta Mathematica Scientia, 2015, 35A (4): 651- 655 | | 15 | Wei G M , Li Q . Mountain pass solutions for fractional coupled nonlinear Schr?dinger systems. Acta Mathematica Scientia, 2016, 36A (1): 65- 79 | | 16 | Cai W , Wang Y , Song Y . Numerical simulation of Rogue waves by the local discontinuous galerkin method. Chin Phys Lett, 2014, 31 (4): 040201 | | 17 | Liao C C , Cui J C , Liang J Z , Ding X H . Muilti-symplectic variational integrators for nonlinear Schr?dinger equations with variable coefficients. Chin Phy B, 2016, 25 (1): 010205 | | 18 | Chen J C , Li B , Chen Y . Novel exact solutions of coupled nonlinear Schr?dinger equations with time-space modulation. Chin Phy B, 2013, 11: 110306 | | 19 | Yao Z A . Homogenization of some linear and semilinear Schr?dinger equations with real potential. Acta Mathematica Scientia, 2001, 21B (1): 137- 144 | | 20 | Li J W , Fang N W , Zhang J , et al. (2+1)-dimensional dissipation nonlinear Schr?dinger equation for envelope Rossby solitary waves and chirp effect. Chin Phy B, 2016, 25 (4): 040202 | | 21 | Luo D H . Derivation of a higher order nonlinear Schr?dinger equation for weakly nonlinear Rossby waves. Wave Motion, 2001, 33: 339- 347 | | 22 | Li Z D , Wu X , Li Q Y , He P B . Kuznetsov-Masoltion and Akhmediev breather of high-order nonlinear Schr?dinger equation. Chin Phy B, 2016, 25 (1): 010507 | | 23 | Philips N A . The equations of motion for a shallow rotating atmosphere and 'traditional approximation'. J Atmos Sci, 1966, 23 (5): 626- 628 | | 24 | Veronis G . Comments on Phillips' (1966) proposed simplification of the equations of motion for shallow rotating atmosphere. J Atmos Sci, 1968, 25 (6): 1154- 1155 | | 25 | Wangness R K . Comment on "The equations of motion for a shallow rotating atmosphere and the 'traditional approxmation'". J Atmos Sci, 1970, 27 (3): 504- 506 | | 26 | Leibovich S , Lele S K . The influence of the horizonal component of the Erath's angular velocity on the instability of the Ekman layer. Journal of Fluid Mechanics, 1985, 150: 41- 87 | | 27 | Draghici I . Non-hydrostatic Coriolis effects in an isentropic coordinate frame. Russian Meteorology and Hydrology, 1987, 17: 45- 54 | | 28 | Sun W Y . Unsymmetrical symmetric instability. Quarterly Journal of the Royal Meteorological Society, 1995, 121: 419- 431 | | 29 | White A A , Bromely R A . Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Quarterly Journal of the Royal Meteorological Society, 1995, 121: 399- 418 | | 30 | Burger A P . The potential vorticity equation:from planetary to small scale. Tellus, 1991, 43A: 191- 197 | | 31 | 赵强, 于鑫. 完整Coriolis力作用下非线性Rossby波的精确解. 地球物理学报, 2008, 51 (5): 1304- 1308 | | 31 | Zhao Q , Yu X . Exact solutions to the nonlinear Rossby waves with a complete representation of the Coriolis force. Chinese Journal of Geophysics, 2008, 51 (5): 1304- 1308 | | 32 | 宋健, 刘全生, 杨联贵. 缓变地形下β效应的Rossby代数孤立波. 地球物理学进展, 2013, 28 (4): 1684- 1688 | | 32 | Song J , Liu Q S , Yang L G . Algebraic solitary Rossby waves excited slowly changing topography and beta effect. Progress in Geophysics, 2013, 28 (4): 1684- 1688 | | 33 | Dellar P J , Salomon R . Shallow water equations with a copplete Coriolis force and topography. J Fluid Mech, 2005, 17: 106601 | | 34 | Plumb R A . The stability of small amplitude Rossby waves in a channel. Stud Appl Math, 1977, 80 (4): 705- 720 |
|