| 1 | ?iri? L B . Generalization of Banach' contraction principle. Proc Am Math Soc, 1974, 45 (2): 267- 273 | | 2 | Nadler S B . Multi-valued contraction mappings. Pacific J Math, 1969, 30: 475- 488 | | 3 | Das K M , Viswanatha Naik K . Common fixed point theorems for commuting maps on a metric space. Proc Am Math Soc, 1979, 77 (3): 369- 373 | | 4 | Jungck G . Compatible mappings and common fixed points(2). Internat J Math & Math Sci, 1998, 11 (2): 285- 288 | | 5 | Mizoguchi N , Takahashi W . Fixed point theorems for multi-mappings on complete metric spaces. J Math Anal Appl, 1989, 141: 177- 188 | | 6 | Amini-Harandi A . Fixed point theory for set-valued quasi-contraction maps in metric spaces. Appl Math Lett, 2011, 141: 1791- 1794 | | 7 | Assad N A , Kirk W A . Fixed point theorems for set-valued mappings of contractive type. Pacific J Math, 1972, 43: 533- 562 | | 8 | Wu J R , Liu H Y . Common fixed point theorems for sequences of Φ-type contraction set-valued mappings. Chin Quart J Math, 2009, 24 (4): 504- 510 | | 9 | Altun I , Türko?lu . Some fixed point theorems for weakly compatible mappings satisfying an implicit relation. Taiwanese J Math, 2009, 13: 1291- 1304 | | 10 | Liu Z Q, Li X, Cho S Y. Fixed point theoems for mappings satisfying contractive conditions of integral type and applications. Fixed Point Theory Appl, 2011, 2011:64, 18pages, doi:10.1186/1687-1812-2011-64 | | 11 | Kaneko H , Sessa S . Fixed point theorems for compatible multi-valued and single-valued mappings. Internat J Math & Math Sci, 1989, 12 (2): 257- 262 | | 12 | Cho S H , Kim M S . Fixed point theorems for general contractive multi-valued mappings. J Appl Math & Informatics, 2009, 27 (1): 343- 350 | | 13 | Piao Y J , Jin Y F . New unique common fixed point results for four mappings with Φ-contractive type in metric spaces. Appl Math, 2012, 3: 734- 737 |
|