| 1 | Jiao Y . A weighted norm inequality for multilinear Fourier multiplier operator. Math Ineq Appl, 2014, 17 (3): 899- 912 | | 2 | Coifman R , Meyer Y . On commutators of singular integrals and bilinear singular integrals. Trans Amer Math Soc, 1975, 212: 315- 331 | | 3 | Coifman R, Meyer Y. Nonlinear harmonic analysis, operator theory and P.D.E.//Stein E. Ann Math Stud 112. Princeton, NJ: Princeton Univ Press, 1986 | | 4 | Grafakos L , Torres R . Multilinear Calderón-Zygmund theory. Adv Math, 2002, 165: 124- 164 | | 5 | Tomita N . A H?rmander type multiplier theorem for multilinear operator. J Func Anal, 2010, 259: 2028- 2044 | | 6 | Grafakos L , Si Z . The H?rmander multiplier theorem for multilinear operators. J Reine Angewandte Math, 2012, 668: 133- 147 | | 7 | Lerner A . A simple proof of the A2 conjecture. Int Math Res Not, 2013, 14: 3159- 3170 | | 8 | Hyt?nen T . The sharp weighted bound for general Calderón-Zygmund operators. Ann Math, 2012, 175 (3): 1473- 1506 | | 9 | Conde-Alonso , Rey G . A pointwise estimate for positive dyadic shifts and some applications. Math Ann, 2016, 365: 1111- 1135 | | 10 | Lerner A, Nazarov F. Intuitive dyadic calculus: the basics. Expo Math, 2018, https://doi.org/10.1016/j.exmath2.18.01.001 | | 11 | Lacey M . An elementary proof of the A2 bound. Isr J Math, 2017, 217: 181- 195 | | 12 | Hyt?nen T , Roncal L , Tapiola O . Quantitative weighted estimates for rough homogeneous singular integrals. Isr J Math, 2017, 218: 133- 164 | | 13 | Lerner A . On pointwise estimates involving sparse operators. New York J Math, 2016, 22: 341- 349 | | 14 | Li K. Sparse domination theorem for multilinear singular integral operators with L.r-H?rmander condition. 2016, arXiv: 1606.03925 | | 15 | Lerner A , Ombrossi S , Pérez C , et al. New maximal functions and multiple weights for multilinear Calder?n-Zygmund theory. Adv Math, 2009, 220: 1222- 1264 | | 16 | Anh B , Duong X . Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers. Bull Sci Math, 2013, 137: 63- 75 | | 17 | Bui T, Conde-Alonso J, Duong X, et al. Weighted bounds for multilinear operators with non-smooth kernels. 2015, arXiv: 1506.07752 | | 18 | Moen K . Sharp weighted bounds without testing or extrapolation. Arch Math, 2012, 99: 457- 466 | | 19 | Hu G , Li D . A cotlar type inequality for the multilinear singular integral operators and its applications. J Math Anal Appl, 2004, 290: 639- 653 |
|